Information Structure and Efficiency in Speech Production

R.J.J.H. van Son and Louis C.W. Pols
Institute of Phonetic Sciences/ACLC University of Amsterdam, the Netherlands \{Rob.van.Son, Louis.Pols\}@hum.uva.nl
\section*{ABSTRACT}

Speech is considered an efficient communication channel. This implies that the organization of utterances is such that more speaking effort is directed towards important parts than towards redundant parts. Based on a model of incremental word recognition, the importance of a segment is defined as its contribution to word-disambiguation. This importance is measured as the segmental information content, in bits. On a labeled Dutch speech corpus it is then shown that crucial aspects of the information structure of utterances partition the segmental information content and explain 90% of the variance. Two measures of acoustical reduction, duration and spectral center of gravity, are correlated with the segmental information content in such a way that more important phonemes are less reduced. It is concluded that the organization of conventional information structure does indeed increase efficiency.

THE IMPORTANCE OF A PHONETIC SEGMENT

- Lexical Information Content I_{L} (bits)

Phonemic contribution to word recognition based on an incremental word recognition model

- Segmental Information Content I_{S} (bits)
I_{L} corrected for average word predictability in context based on Context Distinctiveness

FORMULA'S
Lexical Information Content $\boldsymbol{I}_{\boldsymbol{L}}$

$$
I_{L}=-\log _{2}\left(\frac{\text { Frequency }([\text { word onset }]+s)}{\text { Frequency }([\text { word onset }]+\text { any segment })}\right) \quad \begin{array}{r}
\text { (based on } \\
\text { incremental } \\
\text { word } \\
\text { recognition) }
\end{array}
$$

Context Distinctiveness of a word w: $C D(w)$

$$
\begin{aligned}
& C D(w)=\sum_{\text {vocablury }} P\left(c_{i} \mid w\right) \log _{2} \frac{P\left(c_{i} \mid w\right)}{P\left(c_{i}\right)} \\
& \text { Kullback-Leibler distance between } P(c, \text { and } P(c / w) \text { (use }[-5,5] \text { word-bag) } \\
& P(c / w): \quad \begin{array}{l}
\text { Probabillity of context word } \mathrm{c}_{i} \text { in the neighbourhood of } w \\
P(c):
\end{array} \quad \begin{array}{l}
\text { Probability of } \mathrm{c}_{\mathrm{i}} \text { in general }
\end{array}
\end{aligned}
$$

Segmental Information Content $\boldsymbol{I}_{S} \quad$ (i.e. average in context) Define: $D(w)=\operatorname{RelFreq}(w) \cdot\left(2^{C D(w)}-1\right)$

$$
I_{S}=\log _{2}\left(\frac{\text { Frequency }([\text { word onset }]+s)+D(w)}{\text { Frequency }([\text { word onset }]+\text { any segment })+D(w)}\right)
$$

INTRODUCTION

- Prosodic and Phonetic Features of Utterances Reflect Information Structure (i.e. Importance)
- Speech is Efficient.
>Important Entities are Emphasized
»Redundant Entities are De-emphasized
Examples:
> New Concepts are put in Focus and at the End
> Function Words are Redundant, Short, Reduced, and Never in Focus

FORM FOLLOWS FUNCTION

INFORMATION STRUCTURE AND EFFICIENCY

CENTRAL QUESTION:
How are Redundancy and Reduction distributed at the Segmental Level?

AIMS:

- Quantify the Importance of Linguistic Factors to the Distribution of Information at the Phoneme Level
- Link Information Structure and Phonetic Reduction

MATERIALS \& METHODS

-CELEX Word-Frequency list (38 Million Words) I_{L} Lexical Information

- Spoken Dutch Corpus (1.8 Million Words, $5^{\text {th }}$ rel.)
$I_{L}==>I_{S}$ Segmental Information
-IFA corpus (8 speakers, 50,000 Words)
Labeled \& Segmented Speech, Segments, Reduction Informal and Read speech

Explained Variance:

Maximal Reduction of "Within Factor" Variance after Adding the Factor

Acoustic Measures of Reduction:

- Duration
- Spectral Center of Gravity

First Spectral Moment (all phonemes)

- Formant Contrast

Distance between a vowe/ realization in F_{1} and F_{2} formant space (in semitones) and a virtual target of reduction (each speaker separately). Reduction of a vowel results in a shorter distance to this virtual point in vowel space.

LINGUISTIC FACTORS EXPLORED

CONTRIBUTIONS TO VOWEL $I_{L} \& I_{S}$ WITH RESPECT TO SEGMENTAL FACTORS (100\%)

CONTRIBUTIONS TO VOWEL DURATION AND FORMANT CONTRAST WITH RESPECT TO SEGMENTAL FACTORS (100%)

CONCLUSIONS

- Information Structure is measurable down to the Segmental Level
- Acoustic Reduction is Aligned with Information Structure
- Variation is Distributed in an Efficient Way

BUT:

- There is a lot of "noise", meaning that we have missed important factors
- Larger (and better) corpora are needed

CONTRIBUTIONS TO THE VARIANCE OF SEGMENTAL INFORMATION I_{S}

CONTRIBUTIONS TO VARIANCE OF DURATION

Variance after Segmental Factors $(1 \& 2)=100 \% \quad$ Note: Linear Scale

CONTRIBUTIONS TO VARIANCE OF THE SPECTRAL CENTER OF GRAVITY

