Information Structure and Efficiency in Speech Production

R.J.J.H. van Son and Louis C.W. Pols Institute of Phonetic Sciences/ACLC University of Amsterdam, the Netherlands {Rob.van.Son, Louis.Pols}@hum.uva.nl

ABSTRACT

Speech is considered an efficient communication channel. This implies that the organization of utterances is such that more speaking effort is directed towards important parts than towards redundant parts. Based on a model of incremental word recognition, the importance of a segment is defined as its contribution to word-disambiguation. This importance is measured as the segmental information content, in bits. On a labeled Dutch speech corpus it is then shown that crucial aspects of the information structure of utterances partition the segmental information content and explain 90% of the variance. Two measures of acoustical reduction, duration and spectral center of gravity, are correlated with the segmental information content in such a way that more important phonemes are less reduced. It is concluded that the organization of conventional information structure does indeed increase efficiency.

INTRODUCTION

- Prosodic and Phonetic Features of Utterances Reflect Information Structure (i.e. Importance)
- Speech is Efficient. > Important Entities are Emphasized
 - Redundant Entities are De-emphasized

Examples:

- > New Concepts are put in Focus and at the End
- Function Words are Redundant. Short. Reduced. and Never in Focus

FORM FOLLOWS FUNCTION

INFORMATION STRUCTURE AND EFFICIENCY

CENTRAL QUESTION:

How are Redundancy and Reduction distributed at the Segmental Level?

AIMS:

- Quantify the Importance of Linguistic Factors to the Distribution of Information at the Phoneme Level
- Link Information Structure and Phonetic Reduction

MATERIALS & METHODS

 CELEX Word-Frequency list (38 Million Words) I, Lexical Information

Spoken Dutch Corpus

- (1.8 Million Words, 5th rel.)
- $I_L ==> I_S$ Segmental Information IFA corpus (8 speakers, 50,000 Words) Labeled & Segmented Speech, Segments, Reduction

Informal and Read speech

Explained Variance: Maximal Reduction of "Within Factor" Variance after Adding the Factor

Acoustic Measures of Reduction:

- Duration
- Spectral Center of Gravity First Spectral Moment (all phonemes)

Formant Contrast Distance between a vowel realization in F1 and F2 formant space (in semitones) and a virtual target of reduction (each speaker separately). Reduction of a vowel results in a shorter distance to this virtual point in vowel space.

THE IMPORTANCE OF A PHONETIC SEGMENT

- Lexical Information Content I₁ (bits) Phonemic contribution to word recognition based on an incremental word recognition model
- Segmental Information Content I_s (bits) I, corrected for average word predictability in context based on Context Distinctiveness

FORMULA'S

Lexical Information Content I_L $I_{L} = -\log_{2}\left(\frac{Frequency([word onset] + s)}{Frequency([word onset] + any segment)}\right)$

(based on incremental word recognition)

Context Distinctiveness of a word w: CD(w)

 $CD(w) = \sum_{w=1,\dots,w=1}^{\infty} P(c_i|w) \log_2 \frac{P(c_i|w)}{P(c_i)}$

Kullback-Leibler distance between $P(c_i)$ and $P(c_i|w)$ (use [-5,5] word-bag)

Segmental Information Content I_s

$$I_{s} = \log_{2} \left(\frac{Frequency([word onset] + s) + D(w)}{Frequency([word onset] + any segment) + D(w)} \right)$$

EXAMPLE: /o/ in Dutch 'boom' (English 'tree')

Relative CGN frequency of boom:	5.05.10-5
Context Distinctiveness:	CD(boom) = 4.53
Relative frequency in context:	$2^{CD(boom)} \cdot 5.05 \cdot 10^{-5} = 1.2 \cdot 10^{-3}$
Original smoothed CELEX word count of <i>boom</i> :	2,226 occurrences
Context-corrected CELEX count:	45,402 (1.2.10-3.39.106)
Correction term (eq. 3):	<i>D(boom)</i> = 45,402 - 2,226 = 43,176
Words starting with /bo/:	67,710 (1,172 CELEX entries)
Words starting with /b./:	1,544,483 (26,186 CELEX entries)

>*I*₁=-log₂(67710/1544483) = **4.51** (eq. 1)

 $I_s = -\log_2([67710+43176]/[1544483+43176]) = 3.84$ (eq. 4) ==> $I_{s} < I_{L}$ context reduces lexical uncertainty.

Probabillity of context word c_i in the neighbourhood of *w* Probabillity of c_i in general P(c,|w): P(c): (i.e. average in context)

Define: $D(w) = RelFreq(w) \cdot (2^{CD(w)} - 1)$

LINGUISTIC FACTORS EXPLORED

SEGMENT	1.	Phoneme position	Position of Segment in Word
	2.	Phoneme	Phoneme Identity
WORD	3.	Nr. of Syllables	Word-length in Syllables
	4.	Prominence	: Automatic Prominence (0-4)
	5.	Lexical Stress	: Lexical Syllable Stress
SYLLABLE Consonants	6.	Cluster length	Length of Consonant Clusters
	7.	Syllable Part	: Onset, Kernel, or Coda
OTHER	8.	Word position	Position of Word in Sentence
	9.	Syllable position	Position of Syllable in Word

CONTRIBUTIONS TO VOWEL $I_L \& I_S$ WITH RESPECT TO SEGMENTAL FACTORS (100%)

Variance after Segmental Factors (1&2) = 100%

% Note: Linear Scale

CONTRIBUTIONS TO VOWEL DURATION AND FORMANT CONTRAST WITH RESPECT TO SEGMENTAL FACTORS (100%)

CONCLUSIONS

- Information Structure is measurable down to the Segmental Level
- Acoustic Reduction is Aligned with Information
 Structure
- · Variation is Distributed in an Efficient Way

BUT:

- There is a lot of "noise", meaning that we have missed important factors
- · Larger (and better) corpora are needed

CONTRIBUTIONS TO THE VARIANCE OF SEGMENTAL INFORMATION IS

CONTRIBUTIONS TO VARIANCE OF DURATION

CONTRIBUTIONS TO VARIANCE OF THE SPECTRAL CENTER OF GRAVITY

