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1
General introduction

Cancer of the head and neck and its medical treatment and management, often
has long-term negative consequences on the structures and tissues involved in
a person’s swallowing, speech and voice production. As a result, the way a
person looks, sounds, talks and eats may change. For the speech pathologist,
evaluation of swallowing, speech and voice is an important part of patient man-
agement and is necessary for documenting an individual’s long-term outcome
(Verdonck-de Leeuw et al., 2007a). An important aspect of documenting out-
comes is measurement of functional speech and voice throughout the treatment
process (Verdonck-de Leeuw et al., 2007b).

When assessing voice, a multidimensional approach combining acoustic,
imaging, aerodynamic and patient-reported data in addition to perceptual eval-
uation is recommended (Dejonckere, 2010a,b; Dejonckere et al., 2001). Per-
ceptual assessment of speech can include the components such as respiration,
phonation/vocal quality, resonance, articulation, loudness, and prosody (Freed,
2000; Hodge and Whitehall, 2010). Rating scales of voice quality can consider
the parameters G overall grade or severity, R roughness, B breathiness, A as-
thenia and S strain per the GRBAS scale (Hirano, 1981), or the parameters
intelligibility, noise, fluency and voicing per the INFVo scale (Moerman et al.,
2006).

Although the exact speech and voice assessment protocol can vary according
to the patient’s presenting symptoms, medical history and the preferred protocol
used within an institution, perceptual evaluation of speech intelligibility and
voice quality are common components. An advantage of perceptual evaluation
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is that the equipment and time demands are low and this, as Moerman et al.
(2014) noted, is important if a protocol is to be clinically feasible. In this study,
we primarily focus on the global perceptual components phonation/voice quality
and speech intelligibility.

Articulation is the process of shaping the airstream into speech units by
using articulators (i.e., tongue, lips) to block or restrict the airstream (Freed,
2000). Successful speech production requires the voluntary movement and
control of the articulators with correct timing, force, placement and speed.
Speech intelligibility, on the other hand, is a dynamic process between speaker
and listener and a measure of speech intelligibility should reflect the degree to
which the acoustic signal is decoded/identified by a listener (Kent et al., 1989;
Yorkston et al., 1996).

Although articulation is a major component of intelligibility (see De Bodt
et al., 2002; de Bruijn et al., 2009), intelligibility is more than an articulation
assessment: mispronounced sounds produced in a way that make them (a)
indistinctive from other sounds, or (b) inconsistent in their production confuse
a listener. We include the aspect articulation as a variable in part of this
study given this aspect of speech production is strongly correlated with speech
intelligibility.

Phonation/voice quality reflects the integrity of the voicing source (vocal
folds or neoglottis) for speech sound production based on the perceptual char-
acteristics of the acoustic signal when compared to accepted and cultural norms
for that group. An important aspect to note is that when considering speaker
group, alaryngeal voice should not be perceptually compared to laryngeal voice
(Moerman et al., 2006). As such, alaryngeal voice is unsuitable for evaluation
using generic scales (Dejonckere, 2010a).

The need for an objective listener

In the clinical setting, speech intelligibility can be evaluated using a recognition
task (e.g., open or closed identification) or a rating scale (e.g., 7-point scale).
Voice quality is often evaluated on a rating scale. Although perceptual evalua-
tion is cited as the gold standard (De Bodt et al., 2010; Moerman et al., 2006)
and is a relatively fast procedure, perceptual evaluation requires involvement
from a listener. The question is, however, who is the listener and how does the
listener influence a measurement?

Measures can be influenced by a listener’s background (Mády et al., 2003),
familiarity with the speaker (Hustad and Cahill, 2003), familiarity with the test
material (Yorkston and Beukelman, 1980), and knowledge of whether a speech
sample is from before or after an intervention (Ghio et al., 2013). Unlike a
human listener, tools allowing automatic evaluation for clinical purposes are
not vulnerable to these influences. In the clinical setting, there is a need for a
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clinician/listener to evaluate quality measures of speech and voice with minimal
influence from the listener. Evaluation of speech and voice quality by means of
computerized assessment models may provide an objective and reliable adjunct
to a clinician’s subjective evaluation(s).

Study aims

The objective of this thesis is to investigate whether and how existing automatic
evaluation tools can be adapted for clinical use in measuring voice quality and
speech intelligibility of patients after treatment for head and neck cancer. Our
primary aim is to investigate which tool, or parameters within a tool, can be
used for Dutch speakers with head and neck cancer with regard to evaluating
speech intelligibility and voice quality.

We envisaged that if such a tool could be adapted, it might assist in long-
term patient monitoring (i.e., detection of therapy-induced changes), allow com-
parison of outcome measures and, in the clinical situation, act as an adjunct to
a clinician’s perceptual evaluation.

If these objectives are met, follow-up research could include investigate
whether (1) automatically generated output is sensitive to changes as a re-
sult of speech therapy and/or surgical reconstruction technique, (2) automatic
evaluation tools can be applied to the clinical environment to assist clinicians
in designing therapy plans and (3) automatic tools can be adapted easily to
cross-linguistic situations.

To appreciate the difficulty applying automatic evaluation tools in the clini-
cal setting, we first discuss the general changes to speech and voice that occur
with head and neck cancer before discussing existing automatic tools to evaluate
speech intelligibility and voice quality.

1.1 Head and neck cancer

Head and neck cancer types can be broadly classified according the anatomic
region of the lesion. As illustrated in Figure 1.1, the three main types are (1) oral
cancer (comprising the tongue and floor of the mouth), (2) pharyngeal cancer
(comprising the nasopharynx, hypoharynx and oropharynx, which includes the
base of tongue) and (3) laryngeal cancer (comprising the larynx). Given that
normal speech and voicing requires air movement from the lungs to the oral
cavity and nasal cavity via the larynx and pharynx, it is not surprising that
cancer in these regions and its subsequent medical treatment result in complex
changes to the anatomy and physiology of this pathway.

Before medical management of the cancer, structural changes can impact
on speech and voice and people can present with pain, altered sensation and dif-
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Figure 1.1: The three main anatomic locations of cancer of the head and neck: oral
cancer (white, includes tongue and floor of mouth), laryngeal cancer (green) and
pharyngeal cancer. Pharyngeal cancer comprises the nasopharynx (red), oropharynx
(purple, also includes base of tongue) and hypopharynx (blue).

ficulty swallowing (Cnossen et al., 2012; Hoofd-Halstumoren, 2004; Kazi et al.,
2008b; Pederson et al., 2010). Although changes in voice quality are not fre-
quently reported when tumors are above the level of the larynx, it may be that
changes in voice quality due to lifestyle factors associated with head and neck
cancer, such as smoking and alcohol use (Jacobi et al., 2010c) mask pathology-
related changes. When tumors are at the level of the larynx, people can present
with increased vocal effort, breathiness and hoarseness as tumor(s) can limit
the movement of the vocal folds and/or cause changes to airflow (Jacobi et al.,
2010b).

Medical management for head and neck cancer can be surgical (i.e., re-
moval of tissue) or non-surgical (e.g., radiation therapy) or a combination
of both surgical and non-surgical, termed multi-modality treatment. Surgi-
cal treatment involves tissue removal and often also includes reconstruction,
a process in which nerves involved in speech and swallowing can be compro-
mised (Korpijaakko-Huuhka et al., 1998). Surgical treatment can result in
decreased control and movement of structures requires for speech, such as the
tongue (Hoofd-Halstumoren, 2004). Likewise, radiation therapy can result in
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decreased movement and strength of the articulators as well as other changes
to the mucous membranes in the oral cavity (Hoofd-Halstumoren, 2004; Weber
et al., 2010).

After medical treatment, many patients report speech and swallowing diffi-
culties (Cnossen et al., 2012; Oozeer et al., 2010) and there is an association
between decreased speech intelligibility and decreased quality of life for peo-
ple treated for head and neck cancer (Meyer et al., 2004). Long-term tissue
changes, such as radiation-induced scarring, can continue to negatively impact
speech and voice (Kazi et al., 2008b; Kraaijenga et al., 2016). Larger tumors,
advanced tumors, radiotherapy and extensive resections are associated with
poorer speech outcomes (de Bruijn et al., 2009; Furia et al., 2001; Korpijaakko-
Huuhka et al., 1998; Mády et al., 2003; Nicoletti et al., 2004; Zuydam et al.,
2005) and treatment effects are associated with decreased quality of life (Weber
et al., 2010).

We restrict our discussion on speech and voice changes to two groups:
people who undergo the non-surgical combination of radiation therapy and
chemotherapy (Section 1.1.1) and people who undergo the surgical procedure
total laryngectomy (TL) (Section 1.1.2) . This division reflects the data and
speech material available to our research group and discussed in this thesis.

1.1.1 Non-surgical treatment: chemoradiation therapy

Depending on tumor location and size, non-surgical cancer management in-
volves radiotherapy with or without chemotherapy. One of the most widely
applied protocols is concomitant chemoradiation therapy (CCRT); when
radiotherapy is administered simultaneously with chemotherapy. Although non-
surgical management is viewed as an organ preservation treatment, it is not
synonymous with the preservation of organ function as speech, swallowing and
voice are often negatively impacted by treatment (see review by Jacobi et al.,
2010a).

Before treatment, however, changes may already be present in speech and
voice. Laryngeal tumors can cause perceptual changes to phonation/voice qual-
ity (see review paper by Jacobi et al., 2010a and subsequent studies Jacobi et al.,
2010b) and tumors in the speech tract can impact on aspects of speech pro-
duction such as tongue movement and precision (articulation, especially when
tumor is in the base of tongue) and velum control and movement (nasality, es-
pecially when tumor is in the nasopharynx or oropharynx) (Jacobi et al., 2010b,
2013; Kraaijenga et al., 2015).

Articulation difficulties are associated with decreased tongue motion, partic-
ularly for sounds that require elevation of the tongue tip and control to create
speech sounds with complete or partial constriction (e.g., /t, s, l/) (Bressmann
et al., 2004; Jacobi et al., 2013; Korpijaakko-Huuhka et al., 1998), decreased
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range of motion for the tongue (de Bruijn et al., 2009; Jacobi et al., 2013;
Korpijaakko-Huuhka et al., 1998; Whitehill et al., 2006) and increased nasality
(Jacobi et al., 2013). Recent studies from our department support the notion
that changes in tongue mobility play a central role of in speech intelligibility
outcomes after treatment for head and neck cancer (Jacobi et al., 2010a, 2013,
2015a; van der Molen et al., 2012).

The general trend is that function (speech, voice, swallowing) can be im-
paired before treatment, can decrease during treatment and, although function
improves in the first year, impairments can be long-term (i.e., > 5 years) (Ja-
cobi et al., 2010a, 2013; Kraaijenga et al., 2016, 2015; Pederson et al., 2010;
van der Molen et al., 2012). The effect and impact of treatment varies depend-
ing on tumor location, associated radiation fields and radiation dosage (Jacobi
et al., 2010a,b; Kraaijenga et al., 2016, 2015; van der Molen et al., 2012).

When the radiation field includes the jaw and tongue, changes in movement
and strength of the tongue and jaw, changes in saliva production and consis-
tency, and inflammation of the mucous membranes can be expected (Hoofd-
Halstumoren, 2004; Mowry et al., 2006; Pederson et al., 2010; Weber et al.,
2010). These changes can lead to impairments in speech and swallowing. Short-
term, speakers treated for oropharyngeal cancer have more impaired articulatory
precision compared to other tumor locations (Jacobi et al., 2013). Long-term
many acoustic measures are similar to baseline and this positive outcome is re-
flected in speaker self-reported voice handicap scores (Kraaijenga et al., 2015).

When the radiation field includes the larynx, treatment effects result in
changes to the vocal folds (such as vibration patterns and movement), which
are perceived as impaired vocal quality. Radiation fields encompassing the larynx
are not restricted to laryngeal cancer. For example, 90% of the study group
discussed in Kraaijenga et al. (2015) received > 43.5 Gy to the larynx despite
only 36% of the study group being treated for hypopharyngeal or laryngeal
cancer.

When chemotherapy is included in treatment protocols, radiation side-effects
can become more pronounced (Hoofd-Halstumoren, 2004; Kelly, 2007).

1.1.2 Surgical treatment: total laryngectomy

Background

Although medical treatment options vary for early stage laryngeal cancer, to-
tal laryngectomy (TL) with or without additional non-surgical treatment (i.e.,
radiation therapy) remains the standard treatment for infiltrative advanced la-
ryngeal cancer (Elmiyeh et al., 2010; Timmermans et al., 2015). TL involves
the surgical removal of the larynx, epiglottis, hyoid bone, thyroid and the two
top rings of the trachea (Labaere and Laeremans, 2009). This means that the
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connection between the oral cavity and the lungs is severed: the person no
longer breathes through his/her nose or mouth as the trachea (airway) is pulled
forwards to the base of the neck and breathing now occurs through a created,
permanent stoma.

With the removal of the larynx, the vibratory sound source for speech is also
removed. Voice restoration is either via an external vibratory source (e.g., an
electrolarynx placed against the neck) or an internal vibratory source. This inter-
nal voicing option involves the vibration of a new voicing source, the neoglottis,
which is located within the pharyngeal cavity. To redirect pulmonary airflow to-
wards the neoglottis (also termed the pharyngoesophageal segment), a puncture
between the posterior wall of the trachea and the anterior wall of the esophagus
is surgically created and a device is placed in this opening. This device, referred
to as a voice prosthesis, connects the trachea and the esophagus and ensures
that the puncture remains open and that movement between the two cavities
is in one direction (i.e., air can flow from the trachea to the esophagus via the
prosthesis but food and fluids can not pass from the esophagus to the trachea).
See Figure 1.2 for a schematic illustration.

When the tracheostoma is occluded, pulmonary air is redirected through
the voice prosthesis to the esophagus where it passes the neoglottis and sets
the mucosa into vibration. This type of voice and speech restoration is termed
tracheoesophageal (TE) speech or TE voice. Adequate phonation requires
the neoglottis vibrate and that the speaker has some control over the neoglottis.
This ability depends on the structure and tension/movement of the neoglottis,
however, these aspects among speakers (Schuster et al., 2005; Van As et al.,
2004). The speaker can manipulate this vibrating signal further in the speech
tract via normal articulation.

TE speech and voice

Although TL does not involve the speech articulators, speakers can have de-
creased speech intelligibility after surgery (Bussian et al., 2010; D’Alatri et al.,
2012; Jongmans et al., 2006; Searl et al., 2001). This decrease is often at-
tributed to difficulty

• producing contrasts voiced/voiceless sounds (e.g., /t/ is the voiceless
partner of /d/);

• manipulating airflow to create plosive sounds (e.g., /p,b,t,d/ require a
momentary blockage of airflow) and fricative sounds (e.g., /f, v, s/ require
constriction without blockage of airflow); and

• producing sounds in certain locations (e.g., Dutch sound /h/ is produced
in the glottis and this sound is often incorrectly perceived by listeners)
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Figure 1.2: Schematic depiction of tracheoesophageal communication. The dashed
line indicates the direction of pulmonary airflow through the one-way voice prosthesis
towards the neoglottis. This redirected air sets the mucosa of the neoglottis into
vibration and the resulting sound is further manipulated in the speech tract.

(Jongmans et al., 2006, 2010; Moerman et al., 2004; Searl et al., 2001; van
Rossum et al., 2009).

TE voice is described as low, breathy, weak, gurgly, bubbly and unsteady
(Kazi et al., 2008a; Lundström et al., 2008; van As-Brooks, 2008; van Rossum
et al., 2009) and only a small proportion of TE speakers self-report good voice
quality (D’Alatri et al., 2012). There is a relationship between voice quality and
the tonicity of the neoglottis with moderate to good voice quality associated
with a hypotonic-normotonic neoglottis (Lundström et al., 2008) and poor voice
quality associated with a lack of tonicity (Op de Coul et al., 2003; van As-Brooks
et al., 2005). The relationship between this variability and the reconstructive
surgical technique applied is still unclear (Jacobi et al., 2015b; van As et al.,
1999).

When physiological or imaging data is combined with acoustic information,
the results show that fundamental frequency for TE speakers can range from
approximately 80 to 200 Hz, regardless of speaker gender (Kazi et al., 2009,
2008a; Lundström and Hammarberg, 2011; Lundström et al., 2008; Schuster
et al., 2005). This means that fundamental frequency of female TE speakers is
generally within the range of male TE speakers. Voice quality can be perceived
as less favorable for female speakers if the listener is aware of the speaker’s
gender (Eadie and Doyle, 2004).

In terms of clinical voice evaluation, including acoustic data in a multidi-
mensional approach can be challenging as the irregularities in vibrating char-
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acteristics of the neoglottis mean that the common pitch-detection algorithms
of general acoustic programs fail when the signal has low/no fundamental fre-
quency or has high levels of noise. In this situation, a clinician could consider
incorporating a visual evaluation of a voice sample in a protocol, termed acous-

tic signal typing (AST).
AST was developed as a method of categorizing speech signals for laryn-

geal voices and was adapted by van As-Brooks et al. for alaryngeal speakers.
Using AST, TE voices are categorized into four types reflecting the stability of
the acoustic signal. The suggestion is that AST may be a useful indicator of
perceptual voice quality as there is a relationship between AST and perceptual
ratings of TE voice quality (D’Alatri et al., 2012; van As-Brooks et al., 2006).

1.2 Tools for automatic evaluation

In the last decade, the application of speech technology to perform perceptual
like evaluation has become a research area of interest and results have been pub-
lished on several populations. Unlike commercial tools using automatic speech
recognition where the goal is to achieve maximum recognition, in the clinical
setting the primary goal is to develop tools that reflect perceptual ratings. In
other words, to predict how a listener would evaluate a voice or speech sample.

This thesis is not about developing new speech recognition tools or com-
paring acoustic or language models within the tools; this thesis is about the
application and/or expansion of existing tools with a view towards implemen-
tation in the clinical setting, specifically for speech pathologists working with
speakers treated for head and neck cancer. To this end, an informal literature
search was undertaken to identify key stakeholders in this area and assess the
current standing of the clinical application of automatic evaluation of speech
intelligibility and voice quality.

1.2.1 Literature review

A search in the PubMed database using the search strategy displayed in Figure
1.3, yielded 96 papers of which 7 involved automatic prediction of listener-
derived perceptual scores for voice quality and/or speech intelligibility. In ad-
dition, several journal papers were included by authors identified in the search
but whose papers were not captured in the search strategy. Note that confer-
ence proceedings were not included as additional papers as these papers often
presented preliminary data of a later-published work. Table 1.4 lists a detailed
description of the papers.

The majority of papers investigated automatic evaluation of speech intel-
ligibility (79%), two papers investigated automatic evaluation of voice quality
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Figure 1.3: Illustration of the PubMed literature review search strategy

(14%) and one paper investigated both speech and voice quality (7%). Of
the papers measuring speech intelligibility, one study utilized a commercially
available automatic speech recognizer (ASR) (Hattori et al., 2010) and the re-
maining used ASRs developed by research groups at universities. The three
studies with voice quality data utilized extracted acoustic data with dedicated
software such as AMPEX (Moerman et al., 2004) or a prosody module that
could be combined with ASR data (Haderlein et al., 2007b).

Speech corpora are often re-used within research groups. The largest speaker
groups are speakers with dysarthria (n=60) or a hearing impairment (n=42),
speakers treated for oral cancer (n=46) or cleft lip and palate (n=31), or speak-
ers who use TE speech (n=18-41). With the exception of the cleft lip and palate
speakers, all speakers were adult. One study included Japanese speakers (Hat-
tori et al., 2010), another Spanish speakers (Sáenz-Lechón et al., 2006). Given
that the majority of the research comes from research groups in Germany and
in Belgium, the remaining papers included German or Flemish/Dutch speakers.

Speech intelligibility data includes intelligibility ratings made on a 5-point
scale for sentence level and word level speech material (Haderlein et al., 2007b,
2009; Hattori et al., 2010; Maier et al., 2007, 2009, 2010; Schuster et al.,
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Figure 1.4: Overview of the study design, automatic tool used, speaker groups and
numbers, performance outcome and main conclusion of the papers included in the
literature review
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2006a,b; Windrich et al., 2008) and the percentage of correctly identified
phonemes for word level material (Middag et al., 2009a; Van Nuffelen et al.,
2009). The three papers with voice quality information include data from VAS
(Haderlein et al., 2007b; Moerman et al., 2004) and voice evaluation according
to the GRBAS rating scale (Sáenz-Lechón et al., 2006).

1.2.2 The three main automatic systems

Three recognition systems are predominately used by the research groups: ASR-
ELIS (developed at the Department of Electronics and Information Systems,
Ghent University, Belgium), ASR-ESAT (developed at the Department of Elec-
trical Engineering, University of Leuven, Belgium) and ASR-ER (developed at
the Chair of Pattern Recognition at the University of Erlangen-Nurnberg, Ger-
many). These ASRs can be used as stand-alone systems or included as parts
of a software package. The German Program for Evaluation and Analysis of all
Kinds of Speech Disorders, referred to as PEAKS, uses ASR-ER as the basis
for its analysis. Similarly, ASR-ESAT and ASR-ELIS are used to automate the
Dutch Intelligibility Assessment, referred to as the DIA.

As research has progressed, various acoustic and language models have been
investigated. Clinical application requires a system’s output reflect percep-
tual scores; complicated acoustic or language models do not necessarily entail
stronger system performance when compared to listener-derived scores. This is
because performance for the clinical application of an automatic system is not
based on the absolute recognition accuracy, but rather performance is based on
the strength of the relationship to perceptual scores, the ability to classify into
perceptual categories or to predict perceptual scores.

1.2.2.1 PEAKS

Over half the papers identified in the literature search used ASR-ER either as
a stand-alone system or as part of the Program for Evaluation and Analysis
of all Kinds of Speech Disorders, referred to as the PEAKS software package.
PEAKS uses a word recognizer, ASR-ER, to evaluate the recognition rate of
words from Nordwind und Sonne. This German text contains 108 words (71
unique) and all German phonemes.

ASR-ER Phoneme recognition is supported by Hidden Markov Models (HMM)
that describe the likelihood an analyzed signal matches a phoneme. The ma-
jority of studies using this ASR include polyphone-based models because work
supports these acoustic models lead to stronger correlations with perceptual
data compared with monophone-based acoustic models (Haderlein et al., 2009).
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Figure 1.5: Schematic depiction of one-stage (top) and two-stage (bottom)
automatic systems

The ASR is supplied with a lexicon of the words in the spoken passage as
well as words incorrectly read by speakers (Haderlein et al., 2007b; Schuster
et al., 2006a). The system is also be supported with language models, with the
majority of studies providing a unigram language model as research from the
group found that this model provided the strongest correlations with perceptual
data (Maier et al., 2010). This means that the system is only provided the word
frequencies within the text and not the patterns of words.

For each sentence in the passage, the ASR output is compared with the
target allowing the calculation of two measures expressed as a percentage of
the number of reference words: word accuracy (WA) and word recognition
(WR). The difference between the two measures is that WA counts the correctly
recognized words and penalizes for deleted, inserted or substituted words. WR
only reflects the total number of correctly recognized words. WA is reported to
have stronger correlations with perceptual scores than WR (Maier et al. 2007,
2009; also see Haderlein et al. 2007a; Riedhammer et al. 2007).

Prosody module To extend the performance capability of the system and
expand its use to voice quality, a prosody module is included to extract acous-
tic and prosodic information from the speech signal. This module extracts two
types of information: global prosody features and local prosody features. Global
features are measured over the entire utterance and are based on fundamental
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frequency fluctuations (jitter), intensity fluctuations (shimmer) and the number
of voice/unvoiced segments. Local features are measures of duration, energy
and fundamental frequency over different reference points (e.g., current word;
end of the word). Reference points are determined based on word boundaries
identified by the ASR. The prosody features are reported as averages, maxi-
mums, minimums and standard deviations.

Prediction model To convert speaker features (e.g., WR, WA, any of the
prosody features) to intelligibility scores, the features need to be mapped to
perceptual scores. The PEAKS system uses support vector regression (SVR) to
create a prediction model. Study designs from this research group have predom-
inately used a leave-one-out strategy (Maier et al. 2009; see also Riedhammer
et al. 2007) to develop and test the prediction models.

With this strategy, data from all but one speaker is regarded as training data.
As illustrated in Figure 1.5, the first step is to identify a subset of the speaker
features that correlate with the reference scores. In this case, the reference
scores are the mean perceptual ratings from a group of raters. Features are
selected and added to the model until performance no longer improves.

The subset of speaker features providing the strongest performance is used
to train a prediction model and is validated on the left-out speaker (i.e., the
speaker has a predicted score that was developed on all other speakers). This
process is repeated until every speaker has been used as validation speaker.
The measure of prediction accuracy used by this research group is the corre-
lation (Pearson correlation coefficient and Spearman rank correlation) between
the predicted scores and the mean perceptual scores. See Section 1.2.3 for
information on performance.

1.2.2.2 Automated DIA

The original, manual version of the DIA requires a speaker reads 50 consonant-
vowel-consonant (CVC) combinations while the clinician identifies the missing
sound on a test sheet (e.g., ..op; n .. s). The DIA stimuli were developed so
all Dutch consonants, vowels and diphthongs were included at least once in the
items. The speech intelligibility score is the percentage of correctly identified
sounds.

The computerized version of the DIA allows simultaneous evaluation by
clinician and computer. Unlike the manual version in which only the target
sound is included in the score, the ASRs used in the automatic version have
access to all phonemes. The speech data undergoes acoustic signal analysis in
which for consecutive, overlapping frames are analyzed. The acoustic models
used in the ASR-ESAT and ASR-ELIS systems were trained on speech samples
from control Flemish/Dutch speakers. For each frame, information about the
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energy and the shape of a segment is calculated. The second stage of processing
is when the ASR analyzes this information to generate information on speaker
features.

The two types of features used by this research group to develop prediction
models are phonological-based features and phonemic/monophone features.
These features can be derived either via a process of forced alignment between
the speech material and the text or via a process that does not require forced
alignment. For the literature review period in question, the forced-alignment
approach was more established and as such, we discuss these features in more
details. Although both ASR-ELIS and ASR-ESAT can provide phonological fea-
tures (PLFs) and phonemic/monophone features (PMFs/MPFs) (in addition to
WA), the combination of PLFs from ASR-ELIS and PMFs/MPFs features from
ASR-EAST provide the strongest results (Middag et al., 2008).

ASR-ESAT: PMFs/MPFs These features are considered to reflect how well
monophones such as /s/ or /A/ are realized by a speaker. Note that these fea-
tures were originally termed phonemic features (PMFs), however this was later
changed to monophone features (MPFs) (Middag et al., 2014). To generate the
speaker features, the speech is aligned with the canonical transcription of what
a speaker should have said. This alignment is supported by a semi-continuous
HMM system and acoustic triphone models, meaning that co-articulation effects
from sounds to the left and right are taken into account. The theory behind
analyzing the phonetic segmentation made by the ASR is that it provides a
richer way to characterize a speaker compared to word recognition.

PMFs/MPFs are calculated once all frames have been assigned a triphone
state. For each frame identified as belonging to a certain phone, the average
posterior probability over these frames is calculated. Meaning that for the 40
Dutch/Flemish phones, 40 PMFs/MPFs can be calculated with each feature
value representing how well the phonemic feature was recognized over the entire
utterance.

Each PMF/MPF for a given monophone has an associated value represent-
ing the average posterior probability for that monophone (calculated over all
frames identified as belonging to that sound). High values (max score 1) indi-
cate realizations similar to the acoustic model (i.e., accurately produced, easily
identified) whereas low values (min 0) indicate a realization different to the
acoustic model expected for that monophone.

The first row in Figure 1.6 displays the alignment between speech signal
and target monophones. In the example, the target /d/ from the word dop
is produced as a /t/. As such, its associated value (e.g., 0.3) would be low
compared to the target /p/ realized as /p/ (e.g., 0.8). Note the figure does
not display the corresponding PMF/MPF data.
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Figure 1.6: Example of the two types of PLFs: positive features (green) and
negative features (red). See text for further details. Image used with permission
from C. Middag and taken from Middag (2011)

ASR-ELIS: PLFs Phonological features reflect how well binary phonological
categories related to manner (e.g., burst), place (e.g., bilabial) and voicing
(e.g., voiced) are present or absent at the expected moments. After all speech
frames are assigned a phone during the forced-alignment process, phonological
features can be calculated (a) over the frames where the phonological feature
should be present and (b) over the frames where the phonological feature should
not be present. This results in two types of PLFs: positive PLFs indicate
how much a feature is present when it should be present and negative PLFs
indicate how much a feature is present when it should be absent. There are 24
phonological features each with a binary option (e.g., should be present /should
be absent), which results in 48 PLFs to characterize Flemish/Dutch articulation
patterns.

Figure 1.6 illustrates both the identification of PLFs and their calculation
for two CVC targets dop (spoken as top) and nuis. Aligned under the speech
signal are the respective target phones (e.g., vowel /O/ or closure for /#p/)
and the figure displays three possible PLFs: back, burst, fricative. High
values (max 1) for back on the /O/ and fricative on the /s/ (note, these
values are the average value for the overlapping frames within this segment)
indicate a high probability that the phonological feature was present when it
was expected to be present. The values for burst around the target /d/ are
lower (min 0) as the /d/ was produced as a /t/.

For each phone the posterior probability over the entire test set for each
positive PLF is calculated and averaged for where the feature should be present
(green cells) and for each negative PLF, where the feature should not be present
(red cells). Note no calculation for vowel feature back for consonants. If the
speaker had only produced these two test items, the value for +burst and
�burst would be 0.7 and 0.1, respectively.
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Feature expansion In Middag et al. (2009a), PLFs were extended to context-
dependent PLFs (CD-PLFs). The authors hypothesized that speakers with im-
paired speech may have difficulty producing particular phonological classes in
some phonemic contexts rather than across all contexts. In other words, a
speaker may have difficulty producing a class of sounds in one sound environ-
ment more than in another. To achieve this, CD-PLFs are computed taking the
properties of the surrounding phones into account.

Recognising that speech intelligibility measures derived from single words
may not capture the speech of a person in a communicative setting and to
accommodate reading errors, the PLFs were further extended in Middag et al.
(2010) to alignment-free PLFs (ALF-PLFs). This approach does not require
an alignment between the speech and text, and, indeed, no reference text is
required.

During speech analysis stage for the aligned PLF system, the speech first
undergoes short-term acoustic analysis (generating 12 MFCC coefficients and a
log-energy) and this data is then provided to the ASR-ELIS together with the
speech transcription. The ASR then aligns speech and transcript and calcula-
tion and extraction of the features can occur. In an alignment-free approach,
however, the data from the initial acoustic analysis is directly converted into
phonological feature information describing the feature over the entire utter-
ance. This is achieved with a neural network to compute the posterior proba-
bilities of the phonological properties. Unlike in the standard PLF output that
has a single value per positive/negative property, the alignment-free method
calculates 12 statistical measures per component, such as the mean value and
standard deviation for a feature.

Prediction The second stage requires the speaker features (e.g., PLFs, MPF-
s/PMFs) be transformed into intelligibility scores that reflect perceptual in-
telligibility scores. As illustrated in Figure 1.2.3, this second stage requires
selecting a subset of speaker features to train and develop a prediction model.
The method used in the papers identified in the literature review use linear re-
gression models to predict speech intelligibility. Note that Middag et al. (2010)
reported no performance differences according to model type. When selecting
speaker features for the feature subset, models can be limited to features from
one ASR (e.g., model only able to select from the 40 MPFs) or features from
multiple ASRs (e.g., may select from 40 MPFs and the 48 PLFs to create a
MPF+PLF model).

Study designs from the research group used 5-fold cross-validation to iden-
tify feature subsets yielding optimal model performance. Feature selection was
predominately performed using forward feature selection (Middag et al., 2008;
Van Nuffelen et al., 2007, 2009) (c.f., forward and backward feature selection
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Middag et al., 2009a). In this strategy, the data set is divided into five parts:
four parts are used for feature selection and model training and the fifth part
is used to test the identified strongest model. This process is repeated until all
five parts of the data have been used four times in the training set and once in
the test/validation set. Features are added to the model until performance no
longer improves.

Earlier work reported performance as the Pearson correlation coefficient be-
tween predicted scores and perceptual scores (Middag et al., 2008; Van Nuffelen
et al., 2007, 2009). Later work reported performance as the root mean square
error (RMSE) between predicted and perceptual scores (Middag et al., 2009a,
2010). The authors argue the RMSE is a stronger measure of performance
as it can be directly interpreted because it reflects the distance of predicted
scores from the observed scores and that the RMSE is a stable measure when
a prediction model is developed to cover a range in intelligibility scores but is
tested on a smaller range (Middag et al., 2009a). Note that perceptual scores
are percentage of correctly identified phonemes as perceived by a single rater.

1.2.3 Research trends

1.2.3.1 One-stage systems

Early research investigated system performance as (a) the relationship strength
between a single speech analysis tool and perceptual scores and (b) the sensitiv-
ity of the automatic data to differentiate speech samples from control speakers
and samples from a clinical population. The focus of these studies was to iden-
tify optimal acoustic models, language models and output data. Such studies
utilized a one-stage system in which the output of the automatic tool (e.g.,
WA) is directly used and the perceptual scores are independent of the auto-
matic output (see Figure 1.5 for schematic representation).

The majority of studies using the ASR-ER system involve one-stage pro-
cessing. The drawback of this approach is that the speech recognition systems
are trained on control speakers and performance is predominately measured as
the strength of the relationship between automatic scores and perceptual scores
(e.g., Moerman et al., 2004; Schuster et al., 2006a). This means that a word
recognition rate of 80% does not infer that the speaker was evaluated as being
80% intelligible to a listener.

Data from a control speaker group is used to investigate whether automati-
cally derived scores are sensitive to differences in control/normal versus altered
speech or voice (e.g., Windrich et al., 2008) or the reliability of a system in
a test/retest condition (Hattori et al., 2010). Two studies used a repeated-
measures design where automatic scores for speech intelligibility for a speaker
with and without dentition or a prosthesis were compared (Hattori et al., 2010;
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Stelzle et al., 2010). None of the studies investigated whether automatically
derived scores could track changes in speech or voice over time as a result of
speech pathology intervention.

Performance In general, the correlation coefficient reported between one-
stage systems and observed perceptual scores range r <0.70 to 0.93 for speech
intelligibility (Haderlein et al., 2007b; Windrich et al., 2008) and r 0.46 - 0.78
for voice quality (Haderlein et al., 2007b; Moerman et al., 2004). Agreement
correlation coefficients between automatic scores and mean perceptual data
(i.e., comparing automatic results with an average rater) report  values around
0.50 (see Table 1.4).

The results indicate that although the recognition rate of a system increases
with an increase in language model complexity (1 -gram, 2 -gram, 3 -gram lan-
guage models), this does not equate to improved correlations with perceptual
ratings (Maier et al., 2010). In general, acoustic models using polyphone-based
recognizers achieve stronger correlation coefficients than monophone-based rec-
ognizers (Haderlein et al., 2009).

1.2.3.2 Two-stage systems

In order to have an automatically derived score that reflects that provided by
a listener, a prediction model is required to map automatically derived data
to perceptual scores. This becomes a supervised learning problem. This ap-
proach is used by the research group in Belgium (Middag et al., 2009a, 2010;
Van Nuffelen et al., 2007, 2009) and in later work by the research group in
Germany (Maier et al., 2007, 2009; Riedhammer et al., 2007).

The advantage of two-stage systems is that a subset of features from single
or multiple systems can be combined in a prediction model. Although the
underlying acoustic models used in the automatic tools discussed in this section
are developed on control speakers, the prediction model interprets this data and
applies it to a clinical population of speakers. By doing so, the automatic output
can reflect speech intelligibility or voice quality scores or ratings as evaluated by
listeners. In effect, the computer becomes an additional evaluator. Performance
can then be evaluated as the accuracy of the prediction model against perceptual
scores.

Performance One of the main trends is that inclusion of features from dif-
ferent systems results in performance scores that are stronger than the perfor-
mance of the individual systems. Where previously the strongest correlations for
TE speakers was using WA scores from ASR-ER, the combination of WA from
ASR-ER and prosody information resulted in an increased correlation coefficient
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(Maier et al. 2007, 2009, also see Riedhammer et al. 2007). This pattern was
also reported in Van Nuffelen et al. (2009) in which features from ASR-ELIS
combined with features from ASR-ESAT resulted in stronger performance than
the individual systems (also see Middag et al., 2008, 2010).

The development of CD-PLFs is a possible refinement of the phonological
features as take the surrounding sound environment into account. In a gener-
alized prediction model (i.e., trained on a variety of speaker groups) in Middag
et al. (2009a), a model only making use of the newer CD-PLFs achieved a
performance accuracy that was better than models using only PLFs or MPF-
s/PMFs. Combing CD-PLF information, however, with the other two features
resulted in a small, but not significant improvement in model performance when
trained and evaluated on mixed-pathologies.

Performance also improved when prediction models were speaker-group spe-
cific (e.g., TE speakers) as opposed to general prediction models and the best
combination of input speaker features varies by pathology (Maier et al., 2007,
2009; Middag et al., 2008, 2009a). Also see Riedhammer et al. (2007). This
supports the hypothesis that speech/voice characteristics are pathology specific
and can best be modeled using input features that capture the group in ques-
tion. For pathology specific models, however, combining features from different
systems does not always lead to improved model performance.

With the development of the alignment-free PLFs for Dutch/Flemish speak-
ers and inclusion of prosody information for German speakers, greater opportu-
nities become available for modeling speech and voice quality. Preliminary work
by Middag et al. (2010) indicates that alignment-free features can be used to
develop a reliable model, however, more data is required to assess the accuracy
of prediction models using these features. The work completed by Maier and
associates in 2009 indicates consistent correlations with perceptual ratings for
running speech intelligibility and agreement values between automatic scores
and the average rater are comparable with the level of agreement among a
group of raters.

As far as we are aware, no work has been published on predicting voice
quality scores although work has been published on the correlation between
automatically-derived scores and perceptual ratings (Haderlein et al., 2007b;
Moerman et al., 2004) and automatic classification (Sáenz-Lechón et al., 2006).

1.3 Automatic evaluation in the clinical situa-
tion

Applying speech technology within the area of speech and language is not a
new concept and has been applied in the areas of pronunciation training for
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language learning (Neri et al., 2006) and speech training for speakers with neu-
rological disorders (Beijer et al., 2010). There is a clinical need for automated
tools to provide data that can be used to complement a clinician’s subjective
evaluation of voice quality and speech intelligibility. One of the advantages
of an automated evaluation tool is that derived scores are not influenced by
aspects such as familiarity with the speaker or whether a speech sample is from
before or after an intervention: recognition scores remain constant in test/retest
conditions (Hattori et al., 2010) and the consistent performance of prediction
models for the same database of speakers (see performance data in Table 1.4)
support the reliability of automatically derived measures.

Tools such as PEAKS and the DIA offer automatic analysis in real-time with
clinicians only requiring a laptop/PC, internet connection and quality micro-
phone (Maier et al., 2009; Middag et al., 2009b). The error rates for automatic
evaluations can be as low as 8% (Middag et al., 2010) and, as seen in the
literature review, computer-derived scores attain levels of reliability considered
comparable to that of a group of raters.

The performance of such tools is promising, however, we identified several
interconnected trends in the results of the literature that require consideration
if automatic evaluation is to be considered in the clinical situation.

Perceptual scores The inter-rater variation in perceptual scores increases
as speaker intelligibility/voice quality decreases, which means observed scores
evaluated as having lower quality are more difficult to model. This is evidenced
by a greater error between the predicted score and the observed score. In
addition, most data sets used for model development are skewed and have
fewer examples of speakers with low perceptual scores meaning that observed
data points are not evenly distributed along the perceptual score continuum.
This results in under-training for speech samples with lower perceptual qualities
(also see Chapter 4 of this thesis).

Data set size Re-sampling strategies are necessary when it comes to the
area of developing models for clinical speech and voice populations because
of the relatively small size of speech material with perceptual data available
to researchers. Ideally, data would be divided into training, validation and
test sets where the proportions of severity are held constant over the sets and
where the severities are frequent enough within each category to enable optimal
training. Cross-validation strategies with small data sets is a common technique
to maximize the size of the training and validation sets while keeping the overlap
between sets as small as possible to minimize error (Alpaydin, 2010). Larger
data sets, specifically larger data sets of specific clinical groups, would assist
developing accurate and reliable models with strong generalization capabilities.



General introduction 23

Tracking speaker trends Data sets including multiple recordings from speak-
ers over time could allow the sensitivity of prediction models to be evaluated.
To our knowledge, no automatic evaluation tools have included such speech
material. If a model could track changes in speech or voice quality, it would
offer clinicians a way to collect clinician-independent pre-treatment and post-
treatment data. Beyond the use of automatic evaluation tools for therapy
outcome measures, automatic tools could be used to follow a patient’s progress
(e.g., throughout speech pathology intervention(s) or to monitor long-term
changes post medical intervention(s)). This is of particular importance in the
area of head and neck oncology due to the long-term cancer treatment effects.

Global evaluation The goal of current prediction models has been to predict
perceptual information related to speech and voice quality. Group specific mod-
els (e.g., TE speakers) provide opportunities for a more fine-grained exploration
of voice or speech by considering which speaker-features a model selects. As
noted by Middag et al. (2010), models select features that can often be linked
to the speech characteristics of the speaker group, such as voicing and fricative
production for TE speakers. By developing prediction models utilizing features
related to the speech dimension, the suggestion is that clinicians may be able
to access the profile of a speaker to characterize the nature of the speech dif-
ficulties. Theoretically, clinicians could then use speaker-profile information to
support the identification of therapy goals. The risk is, however, that a cause-
effect relationship could be linked to feature selection: Features are selected as
a model inputs based on correlations and the discriminate strength of a feature
and do not imply a causal relationship between feature and speech intelligibility
or voice quality.

Summary

In general, the results of the literature review show that automatic evaluation
of speech and voice quality by means of computerized assessment models is
possible and may provide an objective and reliable adjunct to a clinician’s sub-
jective evaluation(s) in the clinical setting. For clinical implementation within
the setting of head and neck oncology, the following needs to be considered:

1. Future investigation of automatic evaluation need to focus on detailed
measures rather than global measures to ensure that

(a) results are meaningful for patients and therapist (e.g., to provide
feedback on production),



24 General introduction

(b) the tools can be used to follow the voice and speech characteristics
of population sub groups such as oral cancer versus laryngeal cancer,
and

(c) the results of an individual patient can be followed.

2. Model performance for speakers with lower perceptual scores needs to be
addressed

3. An automatic tool that measures voice quality using F0-based measure-
ments may be unreliable. A non-F0 based measure should be included in
automatic processes (see Jacobi et al., 2010c).

4. Voice measures should not be based on comparisons with control speakers
because control speakers are not representative of these patients due to
(a) a different vocal source and/or (b) lifestyle differences such as alcohol
and smoking which cause changes to vocal quality.

1.4 Thesis outline
As stated in this chapter, the study aim of this thesis is to investigate whether
and how existing automatic evaluation tools can be used in the clinical situation
to measure voice quality and speech intelligibility of speakers after treatment
for head and neck cancer. The goal is to develop models of these two variables
so that objective, automatically derived quality scores can be used as an adjunct
to the perceptual score provided by a clinician.

This thesis focuses on two distinct cohorts of head and neck cancer pa-
tients. For both cohorts extensive recording databases have been collected at
the Netherlands Cancer Institute. The first cohort comprises patients with ad-
vanced head and neck cancer treated with organ-preserving concurrent chemora-
diotherapy (CCRT). As discussed in Section 1.1.1, this treatment may nega-
tively impact on speech and voice. The second cohort comprises patients treated
for advanced or recurrent laryngeal cancer with total laryngectomy (TL). For
these speakers, the insertion of a voice prosthesis can allow speech restoration
via tracheoesophageal speech. The speech material and perceptual data for
each database are described in Chapter 2 (CCRT) and Chapter 5 (TL) and
all evaluation results are listed in the Appendix.

Chapter 3 presents the results of a novel method to evaluate the running
speech intelligibility in the CCRT cohort and this method is extended in Chapter
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4 to include evaluation of voice quality as well as articulation. In both chapters
we also consider whether automatic scores can track changes over times.

In addition to describing the TL database, Chapter 5 investigates the possi-
bilities of categorization of TE vowels according to signal types using acoustic
information. The relationship between these categories and perceptual evalu-
ation is further explored using a dedicated internet-based tool in Chapter 6.
Using the same automatic tools from Chapters 3 and 4, Chapter 7 presents the
automatic assessment models for evaluating TE speech intelligibility and voice
quality. In Chapter 8 the results are discussed and related to recent findings
in the literature.
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NKI-CCRT corpus - speech intelligibility

before and after advanced head and
neck cancer treated with concomitant

chemoradiotherapy0

Abstract

Evaluations of speech intelligibility based on a read passage are often used in the
clinical situation to assess the impact of the disease and/or treatment on spoken
communication. Although scale-based measures are often used in the clinical
setting, these measures are susceptible to listener response bias. Automatic
evaluation tools are being developed in response to some of the drawbacks of
perceptual evaluation, however, large corpora judged by listeners are needed to
improve and test these tools. To this end, the NKI-CCRT corpus with individ-
ual listener judgements on the intelligibility of recordings of 55 speakers treated
for cancer of the head and neck will be made available for restricted scientific
use. The corpus contains recordings and perceptual evaluations of speech intel-
ligibility over three evaluation moments: before treatment and after treatment
(10-weeks and 12-months). Treatment was by means of chemoradiotherapy
(CCRT). Thirteen recently graduated speech pathologists rated the speech in-

0
R.P. Clapham, L. van der Molen, R.J.J.H. van Son, M.W.M. van den Brekel, F.J.M.

Hilgers. Proceedings of the Eighth International Conference on Language Resources and

Evaluation (LREC’12): 23-25 May, 2012, Istanbul, Turkey (pp. 3350-3355).
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telligibility of the recordings on a 7-point scale. Information on recording and
perceptual evaluation procedures is presented in addition to preliminary rater
reliability and agreement information. Preliminary results show that for many
speakers speech intelligibility is rated low before cancer treatment.

2.1 Introduction

A recent randomized controlled clinical trial by van der Molen and colleagues
(van der Molen et al., 2012) followed a group of patients prior to and af-
ter concomitant chemoradiotherapy (CCRT) for advanced cancer of the head
and neck. The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital
(NKI-AVL) has made part of these recordings with speech intelligibility rat-
ings available to researchers to aid the development of automatic methods of
evaluating speech intelligibility. This corpus is termed the NKI-CCRT corpus.
This paper describes the speech corpus and presents some preliminary results
regarding the perceptual evaluation of speech intelligibility.

Developing automatic methods to evaluate speech intelligibility has become
a recent research interest and studies have focused on completely automatic
assessments (e.g., Maier et al., 2009; Middag et al., 2009; Pitaksirianant et al.,
2011; Windrich et al., 2008) or computer-supported evaluation procedures (e.g.
Sentence Intelligibility Test, Yorkston et al. (2007); MVP-online, Ziegler and
Zierdt (2008)). The move towards complete automatic evaluation is in response
to some of the drawbacks of perceptual evaluations of speech intelligibility, such
as a listener’s familiarity with a speaker or knowledge of test stimuli. Although
evaluation of paragraph stimuli provides a more realistic indicator of a speaker’s
level of speech intelligibility outside the clinical situation, evaluations based on
paragraph level stimuli can only be evaluated by means of a scale. Scale-based
evaluations, however, are susceptible to listener response bias (e.g. variation in
internal anchors). Mean scores are often used to remove some of this ‘error’.

In van der Molen et al. (2012) the authors reported a general decrease-
increase trend regarding changes in speech and voice quality, however, changes
in speech intelligibility for the speaker group between evaluation moments did
not reach statistical significance. As van der Molen used a within-speaker
paired-comparison evaluation paradigm, these evaluations are not easily trans-
ferred for training automatic prediction models. For the corpus to be useful in
developing speech intelligibility predication models, we have gathered percep-
tual speech intelligibility ratings for the recordings presented in and collected
by van der Molen et al. (2012).

In addition to presenting the corpus and preliminary information on rater
agreement and rater reliability, we investigate whether (a) the decrease-increase
trend reported in van der Molen et al. is present for scale measurements of
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speech intelligibility and (b) speech intelligibility ratings vary according to which
fragment of a text the listener rated. This last question has implications for
speech technology researchers as it allows researchers to investigate how text
dependent a prediction model may be.

Although we use data based on mean scores in this paper to describe the
speech intelligibility ratings, the corpus is not limited to mean scores. By mak-
ing this corpus with listener judgements on speech intelligibility available for
restricted scientific use, we hope to progress the work into automatic evalua-
tion of speech intelligibility.

2.2 Method

2.2.1 Speakers

The corpus contains recordings of 55 speakers recorded at three evaluation
moments: before CCRT (N = 541), 10-weeks after CCRT (N = 48) and 12-
months after CCRT (N = 39). Average speaker age before CCRT was 57
years. Based on perceptual evaluation by a Dutch phonetician (RvS), speakers
were categorized as either speakers of Dutch as a first language or Dutch as a
second language. This was necessary as language background was not a patient
characteristic collected at the time of recordings. Table 2.1 presents speaker
characteristics.

Dutch 1st Dutch 2nd Total
Language Language (%)

Male 39 6 45 (82)
Female 8 2 10 (18)
Total (%) 47 (85) 8 (15)

Table 2.1: Language background of speakers based on perceptual evaluation of
speech recordings

Speech materials and recordings

Recordings were made in a sound-treated room with a Sennheiser MD421 Dy-
namic Microphone and portable 24-bit digital wave recorder (Edirol Roland
R-1). Sampling frequency was 44.1 kHz and mouth to microphone distance
was 30 cm.

1
Due to an oversight, one speaker’s before treatment recording was not included in the

perceptual experiment.
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All speakers read a 189-word passage from a Dutch fairy tale. We divided
the recorded text into three fragments based on natural breaks in the text (frag-
ment A = 70 words, fragment B = 68 words, fragment C = 51 words). Only
fragments A and B were used in the perceptual experiment and are included in
the corpus. The two fragments are similar regarding number of unique words
(A = 49, B = 50), average syllable length (A = 1.3, B = 1.5) and phoneme
frequencies (A = 237, B = 247). The phoneme /f/ only appears in fragment A
(see appendix for phoneme overview). The text was not balanced for phoneme
frequency and the two fragments do not contain all Dutch phonemes.

2.2.2 Annotations and tags

All recordings were annotated with Praat (Boersma and Weenink, 2011). An-
notations are stored in Praat TextGrid files. Each annotation contains four
tiers:

1. Transliteration: Sentence-aligned transliteration of the spoken utterances
using the conventions of the Spoken Dutch Corpus (Oostdijk et al., 2002);

2. Sentences: The original text aligned per sentence (aligned on the previous
tier);

3. Text: The complete original text;

4. Interferences: Noise markers.

The corpus contains automatically-generated word alignment and phoneme
alignment annotations. Overlapping speech of the clinician has not been tran-
scribed and is marked in the Interferences tier and as silence in the Translitera-
tion tier. Tags used in the Interference tier include Recording Level, Microphone
Failure, Other Speaker, and Noise, indicating, respectively, noticeable changes
in the recording level, manipulations of the microphone that mask all sound,
any speech from other speakers than the patient, and general noise (e.g., phone
ringing). All recordings have been evaluated on the presence of noise and ex-
traneous sounds by one of the authors (RvS) using a 3-point scale.

2.2.3 Perceptual evaluation

A group of recently graduated and about to graduate2 speech pathologists eval-
uated the speech recordings by means of a 7-point scale. All listeners reported
no hearing problems and were Dutch native speakers. Speech intelligibility was

2
All students were either in their final weeks of the speech pathology course or had grad-

uated several weeks before the perceptual evaluation.
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defined as the difficulty/ease with which the listener decodes the speech signal.
Listeners were instructed to try to ignore aspects of voice acceptability, reading
fluency and any interrupting noises in the files. In addition to speech intelligi-
bility, listeners also rated other aspects of speech production (e.g. articulation
and voice quality). This information is not discussed in this paper and is not
included in the corpus.

Although 14 listeners took part in this study, one listener’s results were
removed from analysis as this listener became unwell during the period of com-
pleting the evaluations. Average age of the 13 female volunteers was 23.7 (range
21.9-27.6). Listeners received a small financial reward for their participation.

Task familarization

All participants completed an online familiarization module. The module con-
tained examples of good, reasonable and poor speech intelligibility as evaluated
by one of the authors (RPC). Audio-stimuli were not restricted to speakers with
cancer of the head and neck. Participants used their own anchors and received
no feedback on performance.

Experimental design

All stimuli were presented via an online experiment. Audio file intensity was
averaged to 70 dB. Participants were requested to complete all evaluations
within five days, complete listening sessions at roughly the same time of day
and complete evaluations in a quiet environment using the headset provided
(Sennheiser HD418). Participants had access to the narrative text and were able
to replay a stimulus. Participants were unable to change submitted responses.

Listeners evaluated 4 practice stimuli (fragment C to avoid a learning effect),
just under 300 experimental stimuli (fragments A and B), and a repetition of
the first 10 experimental stimuli (retest items). Stimuli were presented in a
randomized order for each listener. Listeners completed the evaluations over
three sessions. Average time to complete a listening session was 70 minutes.

2.2.4 Corpus meta-data

Age before CCRT and gender is available for each speaker ID3. For each audio
stimulus the meta-data includes speaker ID, recording moment (pre-treatment
[T0], 10-weeks post-treatment [T1], 12-months post-treatment [T3]) and in-
telligibility ratings.

3
Speaker IDs are not related to patient identification numbers.
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Within-rater Between-rater
Rater N Reliability % Agree. N Reliability

PCC (CI) exact (+/-1) PCC (CI)
1 5 0.70 (-0.48-0.98) 20 (80) 39 0.58 (0.32-0.76)
2 9 0.61 (-0.09-0.91) 44 (89) 40 0.68 (0.47-0.82)
3 10 0 .90 (0.63-0.98) 20 (80) 40 0.75 (0.57-0.86)
4 10 0.69 (0.11-0.92) 50 (90) 40 0.76 (0.59-0.87)
5 10 0.73 (0.18-0.93) 40 (80) 40 0.80 (0.66-0.89)
6 10 0.92 (0.68-0.98) 40 (70) 40 0.88 (0.78-0.93)
7 10 0.87 (0.54-0.97) 80 (100) 40 0.71 (0.52-0.84)
8 10 0.92 (0.68-0.98) 50 (100) 40 0.88 (0.78-0.93)
9 10 0.90 (0.62-0.98) 50 (90) 40 0.85 (0.73-0.92)
10 10 0.83 (0.42-0.96) 20 (60) 40 0.80 (0.65-0.89)
11 10 0.79 (0.33-0.95) 60 (100) 39 0.85 (0.73-0.92)
12 10 - 80 (100) 39 0.72 (0.52-0.84)
13 8 0.80 (0.23-0.96) 75 (88) 40 0.85 (0.73-0.92)

Table 2.2: Within-rater reliability and agreement and between-rater reliability.
N = number of paired stimuli, CI = 95% confidence interval. Correlations rounded
to two decimal places. Percentages rounded to whole numbers.

2.2.5 Data analysis

For all analyses the alpha level was .05. Where multiple comparisons were
made, the alpha level was adjusted (see paragraphs below). All statistics were
completed with statistics program R (Team, 2012).

Reliability

Reliability was calculated using Pearson’s correlation coefficient (PCC). We use
this coefficient rather than the non-parametric Kendall’s Tau for two reasons:
to allow comparison with other studies and to report the strength of the associ-
ation between the two variables. Reliability of speaker scores averaged over all
listeners was calculated with the Interclass Correlation Coefficient (ICC) (two-
way random effects model, average consistency).

Within-rater reliability was estimated by comparing each listener’s 10 test-
retest evaluations. For the between-rater reliability 40 stimuli that were not
test-retest items for any listeners were randomly selected. We then compared
each listener’s evaluations against the average of all other raters.
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Agreement

We report the percent exact agreement and the percent close agreement (+/-1
scale score) of each listener’s 10 test-retest evaluations.

Independence of text fragment

We investigated if there were differences in speech intelligibility scores (averaged
across listeners) for the two text fragments by means of Wilcoxon-Signed Ranks.

Changes in speech intelligibility

Change in speech intelligibility over time was investigated for speakers with
three evaluation points by means of Friedman’s test with Wilcoxon test for
dependent samples as post hoc test.

2.3 Results

2.3.1 Reliability and agreement

Table 2.2 displays all listener reliability and agreement information. Although
the correlation coefficient was below 0.7 for two listeners and the lower-bound
CI was below 0, we did not remove these listeners given the small number of
test-retest cases. For one listener no correlation could be calculated because
this listener had no variation in retest scores. Exact agreement ranged from 20
to 80 percent, and percent close agreement ranged from 60 to 100 percent.

Between-rater reliability for the 40 randomly selected audio files ranged
from a PCC of 0.58 to 0.88. An ICC of 0.95 (95% CI: 0.92-0.97) for the
13 participants based on ratings of 37 items4 suggests that the mean score
(averaged over all listeners) is reliable.

Although not all subjects completed all the evaluations per protocol (i.e. an
entire session in one sitting), these subjects were not excluded from the study
as their reliability results indicated that these listeners were no less reliable than
those who completed the evaluations following protocol.

2.3.2 Text fragment analysis

To assess if intelligibility scores varied according to fragment, we compared all
fragment pairs. As there was no significant statistical difference between ratings
for the two fragments (p = 0.18), we report speaker mean scores pooled over
fragments.

4
3 items removed due to missing values
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Evaluation moment Mean (SD) Range
Pre-CCRT 5.61 (0.97) 3.03-6.65
10-weeks after CCRT 5.59 (0.95) 2.32-6.73
12-months after CCRT 5.62 (0.92) 2.88-6.69

Table 2.3: Overview of group speech intelligibility evaluations for the 37 speakers
with three evaluation moments.

2.3.3 Changes in speech intelligibility ratings

Group Level

Based on the mean scores (averaged over all listeners), mean speech intelligibil-
ity is lowest before CCRT (mean 5.41, SD 1.08, N = 54) and highest 12-months
after CCRT (5.85, SD 0.91, N = 39).

As displayed in Figure 2.1, listeners rate many speaker’s speech intelligibility
as low before CCRT. Visual inspection of the figure indicates that for approx-
imately half of the speakers, speech intelligibility ratings peak before CCRT
whereas for the other half of the speakers, change in speech intelligibility rat-
ings appears more variable.

Of the 27 speakers with intelligibility scores under the median before CCRT,
59 percent contribute recordings at all evaluation moments; for speakers with
scores above the pre-treatment median, this is 78 percent. Analysis by means
of Fisher’s exact test revealed that the number of complete evaluation moments
does not significantly differ for speakers who are above or below the median
pre-treatment score (p = .24, CI = 0.10-1.60). We therefore continue our
analysis with the 37 speakers with speech intelligibility scores for all evaluation
moments.

Based on the group average scores of the 37 speakers with recordings for
all evaluation moments, speech intelligibility ratings decreased after treatment
but returned to pre-treatment levels 12-months after treatment (see Table 2.3).
Friedman’s test indicated that there was no significant difference between the
three evaluation moments for the group.

Speaker level

Given the variation in score patterns between the listeners, we investigated
changes at the level of the speaker. Compared to pre-treatment, the majority
of speakers had lower scores at both follow-up moments whereas the pattern
between 10-weeks and 12-months was variable (see Figure 2.1). To investigate
within-speaker changes in speech intelligibility ratings over time, we compared
the scores for each evaluation moment (averaged over the two fragments; 13
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Figure 2.1: Intelligibility scores for individual speakers at each measurement
moment. Data is ordered according to pre-treatment intelligibility score. Dashed
lines show the speakers with a significant difference between two or more
measurement moments (p < 0.0013). T0 = pre-treatment, T1 = 10-weeks post
treatment, T3 = 12-months post treatment.

observations per evaluation moment).

Table 2.4 displays the mean difference in speech intelligibility rating for the
group between all evaluation moments plus the frequency of the direction of
change. For seven speakers (see the vertical lines in Figure 2.1) there was a sig-
nificant difference in scores over time based on Friedman’s test (alpha adjusted
for multiple comparisons, p < 0.0013). There was a significant difference be-
tween the pre-treatment and 10-weeks post treatment rank order comparisons
for six speakers (3 increase), the pre-treatment and 12-months post treatment
rank order comparisons for 2 speakers (2 increase) and 10-weeks and 12-months
post-treatment comparisons for 3 speakers (2 increase).

Mean difference + (%) - (%)
T1-T0 -0.11 15 (41) 22 (59)
T3-T0 .00 12 (32) 25 (68)
T3-T1 0.12 18 (49) 19 (51)

Table 2.4: Mean difference in score between each evaluation moment. For each
evaluation pair, number of speakers with positive (+) and negative (-) differences
are given. Percentages are presented as whole numbers. T0 = pre-treatment,
T1 = 10-weeks post treatment, T3 = 12-months post treatment.



48 Chapter 2

2.4 Discussion

In this paper we have described the recordings and perceptual evaluations of
the NKI-CCRT corpus. For full details on the speakers and treatment we refer
the reader to van der Molen et al. (2012). Unlike the evaluations in van der
Molen et al. who used a paired-comparison paradigm to investigate changes
in speech intelligibility, the results in this paper are based on evaluations made
by 13 (recently) graduated speech pathologists on a 7-point rating scale. This
was necessary as paired-comparison scores allow neither comparison between
speakers nor provide an indication of speech intelligibility: for the data to be
used as training material for automatic evaluation, this information is desirable.

Comparing results between the evaluations reported in van der Molen et al.
and the ratings collected for this corpus is difficult due to the differences in
scoring paradigms and analysis. At a group level, both studies agree that
there is no significant change in speech intelligibility scores over the evaluation
moments. The mean ratings for the 37 speakers who contributed recordings at
all evaluation moments, however, support the decrease-increase trend found in
van der Molen for speech and voice quality.

The lack of significant results when the speakers are taken as a whole is
not surprising given the variability in ratings between the speakers: 59 percent
of speakers’ speech intelligibility ratings decreased after CCRT, and 49 percent
of the speaker’s speech intelligibility ratings increased between short-term and
long-term evaluation moments. Although for six of the speakers there was a
significant effect of time on speech intelligibility ratings, no pattern is apparent
regarding the change of direction (i.e., increase or decrease in speech intelligi-
bility rating). This suggests that variety within the group of speakers may mask
individual speaker changes.

Although the results indicate that the listeners are, as a whole reliable, the
confidence intervals for some listeners’ within-rater reliability are low. This
raises the question whether speaker scores should be averaged over listeners
and, if so, which listeners. We anticipate that future work will investigate the
role of the listener in speech intelligibility judgments: a better understanding
of this relationship may aid automatic evaluation tools.

2.5 Conclusion

The primary aim of this study was to introduce the NKI-CCRT corpus and
present preliminary data on speech intelligibility ratings for the recordings. The
findings that perceptual speech intelligibility scores do not differ depending on
text fragment and that speech intelligibility scores significantly vary for some
speakers over time make this corpus attractive for use in developing speech



Describing the corpus 49

intelligibility prediction models for Dutch speakers treated for cancer of the
head and neck.
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Appendix

Consonant A B Consonant A B
p 3 3 m 5 9
b 2 4 n 31 28
t 18 22 N 3 1
d 12 9 l 8 6
k 7 4 r 14 17
f 1 0 j 3 3
v 4 4 w 7 9
s 10 10 i 4 3
z 1 5 I 7 5
o 2 2
x 11 9
h 9 12

Table 2.5: Consonant frequency for the two text fragments (A and B) based on on
automatic broad transcription of canonical pronunciation.

Vowel A B Vowel A B
e 12 3 O 4 4
E 11 14 a 2 8
A 15 17 Eˆ 6 7
@ 17 24 Oˆ 4 1
u 3 3 @ˆ 1 1

Table 2.6: Vowel frequency for the two text fragments (A and B) based on on
automatic broad transcription of canonical pronunciation.
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Robust automatic intelligibility

assessment techniques evaluated on
speakers treated for head and neck

cancer0

Abstract

It is generally acknowledged that an unbiased and objective assessment of
the communication deficiency caused by a speech disorder calls for automatic
speech processing tools. In this paper, a new automatic intelligibility assessment
method is presented. The method can predict running speech intelligibility in
a way that is robust against changes in the text and against differences in the
accent of the speaker. It is evaluated on a Dutch corpus comprising longitudinal
data of several speakers who have been treated for cancer of the head and the
neck. The results show that the method is as accurate as a human listener in
detecting trends in the intelligibility over time. By evaluating the intelligibility
predictions made with different models trained on distinct texts and accented
speech data, evidence for the robustness of the method against text and accent
factors is offered.

0
C. Middag, R.P. Clapham, R.J.J.H. van Son, JP. Martens. Computer Speech and Lan-
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3.1 Introduction

Effective verbal communication is an essential aspect of daily life and is often
taken for granted. It presents a major bottleneck though for people experiencing
speech disorders. Disordered (or pathological) speech can be the consequence
of a plurality of causes, but the assessment, treatment and monitoring of patho-
logical speech have been receiving growing attention in the biomedical field.

A widely used measure of the severity of a speech disorder is speech intel-
ligibility, loosely defined as the ease with which a listener is able to lexically
decode the utterances of a speaker (Yorkston. et al., 1996). In the clinical set-
ting, measures of speech intelligibility for text level stimuli are often acquired by
means of a perceptual test, but the results of such a test are acknowledged to
be subjective and influenced by the listener’s familiarity with both the patient’s
voice and the read text.

Previous research indicated that automatic speech recognition (ASR) can
be used for intelligibility measurement. Ferrier et al. (1995) experimented with
repeated readings of the same passage to a dictation system (Dragon Dictate).
In a test on ten dysarthric speakers, they obtained high correlations between
mean recognition rate over eight readings and the perceptually measured intelli-
gibility scores. More recently, Vijayalakshmi et al. (2006, 2009) proved that the
phone recognition rate is a valuable measure of intelligibility. But again, only
nine dysarthric speakers were tested. A handful of other objective intelligibility
assessment methods have been reported (Falk et al., 2011; Gu et al., 2005;
Hosom et al., 2004), but a major limitation of using ASR to develop a robust
intelligibility assessment tool is that it needs many recordings of pathological
speech for model training before it reaches a reliable outcome. Unfortunately,
large pathological speech corpora are scarce. This explains why it was only
recently that effective tools for objective intelligibility assessment could be de-
veloped. The tools proposed in Maier et al. (2009) and Middag et al. (2009) for
instance were shown to compete well with traditional perceptual evaluations.

In previous work (Middag et al., 2008; Middag et al., 2009), we were success-
ful in automating the Dutch Intelligibility Assessment (DIA) (De Bodt et al.,
2006; Van Nuffelen et al., 2008). The DIA requires the patient to utter 50
monosyllabic (partly nonsense) words and, per utterance, a human listener has
to identify the tested phoneme. The number of correctly identified phonemes
then determines the phoneme intelligibility (PI). With an Interclass Correlation
Coefficient of 0.91, the inter-rater reliability for scoring PI is strong (De Bodt
et al., 2006). The automated DIA-tool1 works with the same speech items but
uses an automatic system to analyze the utterances and to produce an objective

1
The automated DIA is currently available (for Flemish only) online at

http://diaweb.elis.ugent.be/.
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intelligibility score. Experiments have shown (Middag et al., 2008) that these
objective scores correlate well with the human scores. Nevertheless, the present
DIA suffers from a number of limitations, and in this paper, we address these
limitations and we propose new solutions to overcome them.

3.1.1 Isolated word versus running speech analysis

In the current DIA method each speaker reads 50 consonant-vowel-consonant
(CVC) words, mostly nonsense words. A fundamental problem with this set-
up is that the phoneme intelligibility derived from listening to these isolated
utterances is bound to correlate only moderately with the ability of the pa-
tient to communicate in a more realistic situation where running speech is the
most important speech mode (Kent et al., 1989; Van Nuffelen, 2009). It would
therefore be more interesting to extend our current automatic methods of eval-
uation to the prediction of running speech intelligibility (RSI). This may not
be that unattainable given that the acoustic models embedded in the DIA tool
are already trained on running speech (normal speakers reading full sentences
and text paragraphs). These models are bound to be better suited for the as-
sessment of running speech than they are for the assessment of isolated word
utterances.

3.1.2 Text-dependent versus text-independent methods

The present automated tool performs a time-alignment of a spoken utterance
with the canonical phonetic transcription of the prompted text (= speech-to-
text alignment). By analyzing the alignments for all utterances of a speaker,
a set of so-called speaker features is extracted and from this set the objective
PI is estimated (Middag et al., 2009). However, since some of the uttered
words are nonsense words, the speech material can contain hesitations, reading
errors and pronunciation variations (there may be different acceptable pronun-
ciations of the same nonsense word and the speaker may not necessarily use
the one described by the canonical transcription of the word). Consequently,
a methodology based on speech-to-text alignment is bound to be sensitive to
these sources of variation.

The envisioned automatic intelligibility assessment should be able to produce
a reliable score, even in the presence of discrepancies between what was spoken
and what is encoded in the canonical transcription of the prompted text. In
order to achieve that kind of robustness, the method should not rely too much
on a speech-to-text alignment but rather work with statistical measures that
are presumed to be only weakly dependent on the text that is being spoken.
Obviously, good results will only be achieved if the read text is sufficiently rich
and phonetically balanced.
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Once robustness against text changes is achieved, one can envisage robust-
ness against changes in the accent and the language, even though the latter may
be hard to achieve since every language has its own sound system. On the other
hand, by employing e.g. phonological descriptors, it may be possible to cross
some language boundaries. In this respect we have already demonstrated (Mid-
dag et al., 2011) that phonological features learned on one language (Dutch)
have predictive power in another Germanic language (German).

The rest of the paper is organized as follows. In Section 3.2 we review the
corpus that will be used to experimentally validate the investigated methods.
In Section 3.3 we consider some previously developed methods for creating
speaker feature sets (see Middag et al., 2009; Middag et al., 2010) and we add
a new method leading to a new speaker feature set. In Section 3.4 we describe
the experiments we conducted and show that thanks to the new features an
automatic intelligibility assessment that meets the envisioned robustness criteria
and that is sufficiently accurate to monitor a patient over time is now possible.

3.2 Validation corpus

A very important issue with respect to automated intelligibility analysis is its ex-
perimental validation. Although previous research has shown high correlations
between automatically generated scores and perceptual ratings, these corre-
lations have always been measured on a large group of pathological speakers
where the aim was to compare one speaker against another. However, in a
clinical setting there is also a high need for tools that are able to monitor the
progress of an individual patient. In order to evaluate whether our methods
can accomplish this, we conducted experiments on the recently developed NKI-
CCRT corpus.

All speech material in the new corpus was collected as part of a longitudinal
study on voice and speech outcomes of patients with advanced head and neck
cancer who were treated with concomitant chemoradiotherapy (CCRT, van der
Molen et al., 2012). The perceptual evaluations are part of a larger study
investigating the automatic evaluation of speech intelligibility and voice quality
for speakers treated for advanced head and neck cancer. Here we just provide a
synopsis of the information regarding participating speakers and the perceptual
evaluations that have been performed on the data. We refer the reader to van
der Molen et al. (2012) and Clapham et al. (2012) for more detailed information.

3.2.1 Speakers

The corpus contains recordings and perceptual evaluations of 55 speakers: 54
of them were recorded before CCRT (T0), 48 were recorded ten weeks after
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Text diversity Syllable length Sentence length
Fragment Tokens Types Mean (SD, range) Mean (SD, range)

A 70 49 1.3 (0.6,1-3) 11.7 (6.3,4-21)
B 68 50 1.5 (0.7,1-3) 17.0 (5.8,12-23)

A&B 138 77 1.5 (0.7,1-3) 13.8 (6.4,4-23)

Table 3.1: Characteristics of the two text fragments: number of tokens and number
of types. Average syllable and sentence length are denoted in number of syllables
and number of words respectively. Data are rounded to one decimal place.

CCRT (T1) and 39 were recorded a third time, twelve months after CCRT
(T3)2. Average age at pre-treatment was 57 years (range 32-79) and the tumor
locations are detailed in van der Molen et al. (2012). Based on perceptual
categorization by a Dutch phonetician, 8 speakers were categorized as non-
native whereas the other 47 were categorized as native.

As most speakers were recorded before CCRT and at two moments after
CCRT, this dataset makes it possible to monitor short-term and long-term
changes in a patient’s intelligibility. Preliminary results presented by Clapham
et al. (2012) show however that not all speakers exhibit statistically significant
changes in perceptual speech intelligibility ratings over time.

3.2.2 Stimuli

Two fragments of a 189-word passage from a Dutch fairy tale were selected as
fragments A and B. Fragment A contains 70 words (tokens) while fragment B
contains 68 words. Fragment A contains 49 unique words (types) and fragment
B contains 50 unique words (see Table 3.1). The two fragments have only 22
types in common, which makes them clearly lexically different. Each speaker
read at least one of the fragments, but most of them read both: the corpus
contains 141 recordings of fragment A and 140 of fragment B. Average dura-
tions of the recordings were 26.9 seconds for fragment A and 26.4 seconds for
fragment B.

From the phoneme frequencies in fragments A and B (see Clapham et al.,
2012), it follows that the two fragments have an almost identical phonetic
balance.

2
There were also recordings for some of the patients at time T2, situated between T1 and

T3, but due to time constraints, these recordings were not perceptually rated, and therefore

not used in this study. However, to maintain numerical consistency with the publication

of van der Molen et al. (2012), we use the term T3 for the last recording moment.
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3.2.3 Perceptual analysis

Thirteen recently graduated or about to graduate speech pathologists (all fe-
male, native Dutch speakers, average age of 23.7 years) evaluated the speech
recordings in an on-line, self-paced experiment. The recordings were presented
in a randomized order and listeners could replay a recording as many times as
they wished. Each recording contained the reading of a complete fragment by
one speaker. The listeners used their own anchors and received no feedback
on performance. All listeners completed an on-line familiarization module be-
fore evaluating the stimuli for the dataset. The retest recordings (repetitions
of formerly rated recording) and items for practicing are not included in the
dataset.

Intelligibility was evaluated on a 7-point scale with labels provided for the
scale ends (“poor” for 1 and “good” for 7). Preliminary results presented in
Clapham et al. (2012) indicate that although some listener’s test-retest relia-
bility was low, the Interclass Correlation Coefficient (Shrout and Fleiss, 1979)
assessing the between-rater reliability was 0.95 (based on a sample of 37 items).
This high value indicates that the mean intelligibility scores are reliable. The
percentage exact agreement for the rater’s test-retest recordings ranged from
20 to 80 percent. The percent close agreement (± 1 difference on the scale)
ranged from 60 to 100 percent. In terms of Pearson Correlation Coefficient
(PCC), the correlation between the scores of one individual rater and the mean
perceptual ratings (= means of the scores of all 13 raters) varies between 0.72
and 0.92, with a mean of 0.84.

Figure 3.1 depicts the histogram of the mean perceptual ratings for all
recordings.

3.3 Objective intelligibility assessment

The derivation of an objective intelligibility score is a multi-stage process involv-
ing an acoustic analysis, a phonetic or phonological analysis, a speaker feature
extraction and an intelligibility prediction.

The acoustic analysis extracts a stream of acoustic parameter vectors
Xt, t = 1, ..., T , with t a multiple of 10 ms, from the waveform.

The phonetic or phonological analysis aims at converting the acoustic
parameter vectors into phonetic or phonological scores. A phonetic analysis
generates scores for a finite set of distinctive speech sounds, called phones,
that can be used to annotate how speech is perceived. A compact phone
set for American English is the one that was used for the annotation of the
TIMIT corpus (Fisher et al., 1986). A much more extended phone set is the
set of triphones (context-dependent phones) used in modern ASR systems. A
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Figure 3.1: Histogram of the mean perceptual scores (= means over 13 raters).

phonological analysis generates scores for a finite set of binary phonological
categories that can be used to annotate speech in terms of its production.
Two examples of phonological categories are “voiced” and “nasal”. The former
indicates whether the vocal chords are vibrating, the latter whether the air
streams through the nasal cavity. In both analyses, the scores are computed
by means of stochastic acoustic models whose free parameters were optimized
(trained) on a corpus of normal speech.

The speaker feature extraction derives holistic features that characterize
the speech of a certain speaker as a whole. One approach is to make a speech-
to-text alignment which produces the most likely segmentation into phones,
given the acoustic model outputs and knowledge of the text that was spoken.
From this segmentation one can then extract, per phone or phonological cate-
gory, a holistic feature indicating the mean confidence of the acoustic models in
time intervals that are assigned to that phone or phonological category (e.g. all
back vowels). Another approach is not to perform any alignment but to char-
acterize the acoustic model outputs as they evolve in time in the course of the
speaker’s utterances. Examples of such holistic features would be the mean
nasality, the mean of the peaks in the voicing evidence, etc.

The intelligibility prediction is finally responsible for converting the speaker
features into a speaker intelligibility score. It does so by means of a so-called
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intelligibility prediction model (IPM).
In the subsequent sections, we propose a number of approaches for deriving

interesting speaker features and for developing robust IPMs on the basis of a
limited amount of speaker data. In particular, we will discuss three previously
proposed speaker feature sets as well as a novel set that is specifically designed
with the aim of increasing the robustness of the IPM against text and accent
changes.

3.3.1 Speaker feature extraction

We have investigated our speaker feature extraction methods according to two
axes. One is whether or not they involve a speech-to-text alignment. Another
is whether they incorporate a phonetic or a phonological analysis.

3.3.1.1 Alignment-based features

In an alignment-based approach we make use of the prompted text to create
a Hidden Markov Model (HMM) M that can generate all possible utterances
of that text. The creation of that HMM relies on a pronunciation dictionary
containing canonical phonemic transcription of all words, a procedure for con-
verting phonemic transcriptions to phone sequences (see further) and a prede-
fined model architecture for each phone model (e.g. a three state model). The
acoustic models are needed to compute the probability P (X,S|M) of gener-
ating acoustic parameter sequence X along a state sequence S3. The task of
the aligner is thus to find the most likely state sequence S along which X can
be generated.

We have experimented with two aligners (see also Middag et al., 2008).
The first one, called ASR-ESAT, uses an inventory of context-dependent phones
(triphones) and Gaussian Mixture Models (GMMs) to compute the P (Xt|st).
The second one, called ASR-ELIS, uses a compact phone inventory which is the
Flemish equivalent of the set that was employed for annotating TIMIT.

Speaker feature extraction with the ASR-ESAT aligner

The ASR-ESAT aligner (Demuynck, 2001) works with acoustic parameter vec-
tors that are created as follows: computation of 24 log-mel-spectral coefficients
per time step (Davis and Mermelstein, 1980), application of noise masking
and spectral mean normalization (D. Van Compernolle, 1989), addition of first

3
We are aware that strictly speaking the probability is a likelihood, but in spite of this it

is conventional to make no distinctions between likelihoods and probabilities so as to simplify

the discussions.
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and second order derivatives, decorrelation of the 72-dimensional vectors (De-
muynck et al., 1998) and dimensionality reduction via MIDA (Demuynck et al.,
1999). The final vectors are 39-dimensional.

The aligner uses context dependent phones, called triphones as they are
characterized by a central phone and its left and right neighbors. Each triphone
has three states, but a global decision tree clusters the many thousands of
triphone states into 1567 tied states each modeled by a separate GMM. How-
ever, all GMMs are built on one large set of state-independent Gaussians (=
semi-continuous HMM).

Omitting the M from the formerly introduced notation, the probability
P (X,S) is computed as

P (X,S) =
TX

t=1

P (st|st�1) P (Xt|st) (3.1)

with P (st|st�1) representing the constraints imposed by the HMM and P (Xt|st)
the so-called emission probabilities computed by the GMMs.

The speaker feature extraction then works in two stages. First of all it
converts the likelihoods P (Xt|st) to posterior probabilities:

P (st|Xt) =
P (Xt|st)P (st)

P (Xt)
(3.2)

P (Xt) =
NSX

j=1

P (Xt|st = Sj)P (Sj) (3.3)

with the summation taken over the set S = {Sj : j = 1, .., NS} of all possible
triphone states. Then, it takes the mean posterior over all states belonging to a
triphone with a particular central phone Fk. Repeating this for all monophones
Fk (k = 1, .., NF ) leads to NF = 40 monophone speaker features.

Speaker feature extraction with the ASR-ELIS aligner

The ASR-ELIS aligner works with acoustic parameter vectors that are created
as follows: computation of the log-energy + 12 MFCCs per time step ((Davis
and Mermelstein, 1980)), cepstral mean normalization and addition of first and
second order derivatives. Each vector consists of 39 components.

The system employs 55 phones: 40 monophones, 6 plosive closures, 6
plosive bursts, a glottis and two silence symbols to accommodate inter and
intra-sentence pauses. Each phone is modeled by a single-state model. The
probability P (X,S) is computed as

P (X,S) =
TX

t=1

P (st|st�1) P (Xt+5
t�5 |st) (3.4)
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with Xt+5
t�5 representing the acoustic parameter vectors Xt�5, .., Xt+5.

The acoustic models work in two stages: first of all, a neural network based
phonological category detector (Figure 3.2) extracts the posterior probabilities

Ytm
.
= P (Cm|Xt+5

t�5 ), m = 1, .., NC = 24 (3.5)

that phonological categories Cm are on/active/present at time t. In the second

X 

voicing 

manner 

consonant 
place 

vowel place 

Xt- 3,…,Xt+3 

Xt- 5,…,Xt+5 

Figure 3.2: Architecture of the phonological feature analyzer: see (Stouten, 2008).

stage, P (Xt+5
t�5 |st) is replaced by P (Yt|st)/P (Yt) and the latter is computed

as

P (Yt|st)
P (Yt)

=
P (st|Yt)

P (st)
, P (st = Sj |Yt) =

2

4
Y

m,Vm(Sj)=1

Ytm

3

5

1
Np(Sj)

(3.6)

where S = {Sj : j = 1, .., NS = 55} is the set of phone states, Vm(Sj) = 1
means that Sj belongs to category Cm and Np(Sj) is the number of categories
Sj belongs to. For more details and motivation and for a complete list of
phonological categories, the reader is referred to (Stouten and Martens, 2006).
Here we just mention some typical examples such as “voiced” (= vocal source
class), “burst” (= manner class), “labial” (= place of a consonant) and “mid-
low” (= height of a vowel). The fact that probabilities are estimated over a
time interval of 125 ms (= 10 times frame shift + 1 time frame size) means
that co-articulations between phones can be handled implicitly, even though the
Yt will be evaluated using monophone state distributions.

The speaker feature extractor now takes the mean of the posterior prob-
abilities P (st|Yt) over all frames that were assigned to a state belonging to
category Cm (Vm = 1). This leads to NS positive features PLF1(m). In a
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similar vein, it also computes negative feature PLFo(m) by taking means over
frames that were assigned to a state not belonging to category Cm (Vm = 0).

The problem with the straightforward averaging method described above is
that the different phones contribute with a different and text-dependent weight
to a particular PLF(m). Therefore, we proposed (Middag et al., 2008) to take
an average per phone first and to take the mean of these averages over all
phones with the right Vm (0 or 1).

Note that certain features can be irrelevant for some of the phones (e.g. a
vowel category is irrelevant for a consonant), so that not all frames are nec-
essarily involved in the computation of the positive and negative features of a
certain category.

Later we will retrieve phonological features for Dutch speech from either a
Flemish or Dutch phonological category detector. However, the two accents of
Dutch differ in e.g. the voicing of fricatives and the degree of diphtonguation
of long vowels (Nerbonne et al., 1995; Van Compernolle et al., 1991). One
can still use a Flemish detector for analyzing Dutch speech provided the the
phonological descriptions of the phones are set correctly. E.g. the /g/ that
was “voiced” during the training of the Flemish detector must be set “unvoiced”
for the assessment of Dutch speech. Otherwise, the speech-to-text alignment
might derail for some sentences.

3.3.1.2 Alignment-free features

We conjecture that in order to achieve a robust intelligibility assessment, we
should utilize speaker features that can be obtained without exact knowledge
of the text that is spoken, i.e., without the requirement of a meticulous speech-
to-text alignment. Here we discuss two such feature sets, namely a previously
developed one and a newly proposed one.

Phonological features

In Middag et al. (2010) we have developed phonological speaker features that
can be computed without any knowledge at all about the read text. As their ex-
traction does not require any speech-to-text alignment, we call the new features
alignment-free and we denoted them as ALF-PLF. The only kind of ‘alignment’
that is needed is one at the level of speech or silence. Silences longer than
1 second are detected by means of an energy-based silence detector and are
excluded from further analysis.

As before, the vectors Xt are converted into posterior phonological category
probabilities Yt, but this time we only distinguish categories that can be retrieved
from very local information carried by Xt�1, Xt and Xt+1 (see below for a
motivation). For instance, a modulation feature like “trill” is not considered.
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Three binary categories “voicing”, “silence” and “turbulence” are always on
or off and are modeled by a single MLP. Nine other categories, like “nasal”,
can be on, off or irrelevant and are modeled by a tandem of two MLPs: one
that distinguishes between relevant (=1) and irrelevant (= 0) and another that
distinguishes between on (= 1) and off (= �1). The latter MLP also takes the
output of the first MLP into account. Two vowel categories “back” and “high”
are modeled in a slightly different way. Here the first MLP makes a difference
between “non-central” and “central” or “consonant” (and something similarly
for “high”). The argumentation is that pathological speakers mainly experience
problems with vowels at the extremes of the vowel trapezium, and not with
the central vowels, and therefore one can consider “central” as irrelevant for
measuring deficiencies along the place or hight dimensions. To sum up, the
output of the phonological analyzer consists of 25 components Zt.

For each speaker, a statistical analysis of the temporal evolution of each
individual component of Zt is performed. This analysis yields 12 measurements
per component, e.g. mean value, standard deviation, percentage of positive,
negative and close-to-zero values, mean of the peaks and the valleys, mean
time needed to reach a peak or valley, etc. In total, the analysis thus yields
12 x 25 = 300 ALF-PLFs. The hypothesis is that temporal fluctuations in the
components of Zt can reveal articulatory deficiencies, regardless of the exact
phonetic content of the text that was read, at least as long as this text is
sufficiently rich in phonetic content.

Phonological classes are in principle universal (cross-lingual) but they are
extracted by models that were trained on data of one language, exposing con-
textual influences which are typical for that language. We argue that by sup-
plying only very local information (Xt�1, Xt and Xt+1) to the phonological
analyzer, we can achieve that these contextual factors have only a weak impact
on the trained models. As such, these models are expected to be predictive
in other languages than the one available during training. Our previous work
(Middag et al., 2011) confirmed that ALF-PLF derived from the outputs of
Flemish phonological detectors can predict the intelligibility of German patho-
logical speakers.

Monophone features

The ALF-PLF are expected to be powerful if the intelligibility reduction due to
a certain speech disorder can be attributed to problems with the realization of
individual phonological classes. Nevertheless, it may well be that this degrada-
tion mainly follows from problems that only arise when a certain combination
of phonological classes must be realized, e.g. the realization of “voicing” and
“fricative” in phone /z/. In that case, intelligibility prediction could benefit
more from features that take these interactions between phonological classes
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into account.
An obvious way to accommodate this is the following. In the first stage one

assigns all frames to the phone Fk (= state Sk) that yields the maximal pos-
terior probability according to Equation 3.6. In the second stage one considers
all frames assigned to phone Fk and one measures the mean, the standard de-
viation, the mean of the valleys and the mean of the peaks as the four speaker
features for phone Fk. Note that we return to a context of 5 frames to the
left and to the right again because we reckon that contextual modeling is a
requisite to get good context-independent phone evidences.

To complete the our feature set, we also count the frames where Fk had
the maximum posterior probability and convert it to P (Fk|U,R), the probability
that Fk appears in the utterance U (actually the concatenation of all sentences
spoken by the speaker) when the text to read was R. Clearly this probability
can be decomposed as follows:

P (Fk|U,R) =
NFX

u,r=1

P (Fk, Fu, Fr|U,R) k = 1, .., NF(3.7)

=
NFX

u,r=1

P (Fr|R) P (Fu|Fr) P (Fk|Fu) k = 1, .., NF (3.8)

The meanings of the probabilities in the right hand side are the following:

• P (Fk|Fu) is the probability that Fk is the winner when the speaker tries
to utter Fu. Obviously it depends on the quality of the phonological
analyzer, but more importantly, on the difficulties the speaker experiences
to pronounce Fu.

• P (Fu|Fr) is the probability that the speaker tries to pronounce Fu when
according to the canonical transcription of the text it should have been
Fr. It is a measure of how many times the speaker is making a reading
error.

• P (Fr|R) is the probability that Fr appears in the canonical transcription
of the text. This is strictly a property of the text, but if the text is long
enough it will be more like a property of the language.

The above formulation allows us to demonstrate that as long as the number of
reading errors is small, the ratio P (Fk|U,R)/P (Fk|R) is bound to be a sensible
text-independent feature to add to the other ALF features. Indeed, under the
given assumption Equation (3.8) can be simplified and one obtains that

P (Fk|U,R)

P (Fk|R)
'

NFX

r=1

P (Fr|R)

P (Fk|R)
P (Fk|Fu = Fr) (3.9)
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Obviously, the sum in the right hand side is bound to contain only a few relevant
terms. If P (Fr|R) is much lower than P (Fk|R), the term is obviously negligible.
On the other hand, if P (Fr|R) is much larger than P (Fk|R) we suppose that
this will be true for any text, and in that case one can expect the acoustic
model of Fr to be much better trained than that of Fk. Consequently, it is
very unlikely then that Fk will be the winner when Fr 6= Fk is uttered. We
can thus conclude that the sum will only contain components with a weight
P (Fr|R)/P (Fk|R) that is close to 1, and therefore, that the sum will only
weakly depend on the text that was read.

By also adding the same probability ratios, but this time with a nominator
that the mean posterior probability of Fk over all frames of the utterance, we
finally obtain 6NF = 6⇤55 = 330 alignment-free monophone speaker features,
denoted as ALF-MPF.

3.3.2 Intelligibility prediction model

Once all speaker features have been computed, they need to be converted to an
intelligibility score using a regression model, hereafter called the intelligibility
prediction model (IPM).

A variety of statistical learners is available for optimizing regression prob-
lems. However, in order to avoid over-fitting, only a few of them can be applied
to a data set comprising as few as Nsp = 55 speakers. We therefore opt for
ensemble linear regression (ELR), which combines the low model complexity of
linear regression with a bagging strategy (Breiman, 1996). The latter boosts
the predictive power by using many simple models (linear regression models in
this case) which are each trained on a different random subset of the train-
ing data. For the training of our ELR model we create ten random divisions
of the training set into two equally large parts: one part for estimating the
regression coefficients and the other for assessing the model. As we have a
large number of features at our disposal and as every division will only com-
prise a very restricted number of speakers (not more than 28), some feature
selection procedure is indispensable. Every single model is created by adopt-
ing a greedy forward feature selection procedure which starts with the feature
leading to the best performance and continues to add features as long as that
performance rises. The utilized performance criterion is the Root Mean Squared
Error (RMSE) between targeted and computed scores. Typically, the number
of selected features varies between 2 and 10.

To compute the intelligibility of a test utterance, we employ the ten models
emerging from the training set divisions to yield one estimate and we take the
average of these ten estimates. In practice, this final score can be achieved more
efficiently by constructing a single linear model in the space of the features that
were selected by at least one of the ten models.
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3.4 Experimental evaluation

The main objectives of the experimental evaluation were to assess the accuracy
of the IPMs derived from the different speaker feature sets and their robustness
against changes in the read text and the spoken accent (Dutch or Flemish).
In order to reach these objectives we have derived IPMs from different text
fragments (fragments A and B).

In order to investigate accent dependency, we tested feature sets derived
by means of acoustic models trained on Flemish and Dutch normal speech
respectively. The Flemish phonological category models were trained on 7 hours
of read speech from the CoGeN corpus (Demuynck et al., 1997). The speech
came from 174 persons residing in Flanders, the northern part of Belgium. The
Flemish phone models were trained on 40 hours of read speech from the Spoken
Dutch Corpus (Schuurman et al., 2003), namely speech of 150 speakers residing
in Flanders. The Dutch phone and phonological category model sets were both
trained on 64 hours of read speech from the Spoken Dutch Corpus, namely
speech of 324 speakers residing in the Netherlands.

Before describing our experimental results in more detail, we first take a
closer look at the evaluation strategy we have adopted. All IPMs were trained
and evaluated using a 5-fold cross validation (CV) strategy. As most speakers
were recorded two or three times (at T0, T1 and/or T3) and since two frag-
ments (A and/or B) were recorded in most cases, 281 samples were available
in total. These samples were divided into five folds such that all recordings of
one speaker always belonged to one fold. Performance is expressed in terms of
the RMSE and the Pearson Correlation Coefficient (PCC) between computed
and perceptual intelligibilities. The latter were defined as mean scores over
all human raters. The Wilcoxon signed-rank test (Sheskin, 2004) is used to
investigate whether results are significantly different at a confidence level of
0.05.

3.4.1 Individual speaker feature sets

In a first experiment we tested the four feature sets we proposed in combination
with IPMs that were trained and tested on the same fragment. In view of later
experiments however, we introduce the notation A ! B for instance to express
that the IPM is trained on fragment A and tested on fragment B. In Table 3.2
one finds the results for the cases A ! A and B ! B, and for features that
were either computed with the help of Dutch or Flemish acoustic models.

The main conclusion is that the monophone features (MPF and ALF-MPF)
outperform the corresponding phonological features in most cases. There is
only one exception to this rule, namely the Flemish MPF performing worse
than ALF-PLF on fragment A. The difference between PLF and MPF can
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A ! A B ! B
FL DU FL DU

Features RMSE PCC RMSE PCC RMSE PCC RMSE PCC
MPF 0.82 0.60 0.65 0.77 0.68 0.73 0.60 0.77

PLF 0.83 0.58 0.79 0.60 0.75 0.63 0.68 0.72
ALF-PLF 0.77 0.63 0.77 0.62 0.74 0.66 0.73 0.66
ALF-MPF 0.68 0.73 0.68 0.73 0.70 0.70 0.70 0.70

Table 3.2: Performances of IPMs using from Flemish (FL) or Dutch (DU) feature
sets. Per training and test fragment combination, results differing significantly at a
level of p < 0.05 from the best result (indicated in bold) are underlined.

be partly explained by differences in the systems supplying the text-to-speech
alignments that are needed for constructing the speaker features: the state-
of-the-art ESAT-ASR usually leads to a better alignment than the much less
complex ELIS-ASR. The difference between ALF-MPF and ALF-PLF on the
other hand cannot be explained in terms of the alignment (there is none) nor
in terms of the phonological analyzers that were used (they were actually very
similar). The data seem to support the hypothesis that intelligibility reduc-
tions are more correlated with co-occurrences of phonological classes, as they
materialize in specific phonetic units, than with individual phonological classes.

The second conclusion we can draw is that the alignment-free features
have a more consistent performance across different configurations than the
alignment-based features. On the other hand, the alignment based features do
usually lead to the highest performance (again with the exception of Flemish
MPF on fragment A). The latter is due to the fact that the speakers recorded
in the NKI-CCRT corpus were mostly native adults who did not make many
reading errors which could have derailed the alignment.

3.4.2 Robustness against speaker accent

A very striking result with respect to the impact of the speaker accent is that
the alignment based methods are sensitive to a change of accent whereas the
alignment-free methods are not. As expected, the alignment based models
clearly perform better when the acoustic models are matched to the accent of
the speaker.

That alignment-free features are so robust must mean that the global statis-
tical analysis conducted to retrieve alignment-free parameters is robust against
differences in the quality of the phonological analyzer, whereas the state-by-
state analysis in an alignment-based method tends to be sensitive to the quality
of the best alignment path.
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3.4.3 Robustness against changes in the text

In order to investigate this aspect we conducted an additional experiment in
which we tested the matched alignment-based feature sets (DU-MPF and DU-
PLF) and the matched alignment-free feature sets (DU-ALF-PLF and DU-ALF-
MPF) in combination with matched and unmatched IPMs. The IPM is called
unmatched if it is not trained and tested on recordings of the same text frag-
ment. The results obtained with different combinations of text fragments can
be found in Table 3.3.

The data clearly demonstrate that all feature sets show the same perfor-
mance on a particular test fragment, irrespective of whether the IPM was trained
on the same or on another text. However, the used test set does play a role.
The differences between the figures obtained by testing on A and B are much
larger for the alignment-based than for the alignment-free feature sets. This
proves that the latter feature sets are more robust to changes in the text during
evaluation. We argue that this stems from the fact that the quality of the
alignment depends to some extent on the phonetic content of the text (it is
known that some sound sequences are much more difficult to segment than
others). The mismatch between the training and the evaluation text does not
seem to be a problem though.

A ! A B ! A B ! B A ! B
Feature set RMSE PCC RMSE PCC RMSE PCC RMSE PCC
DU-MPF 0.65 0.77 0.68 0.76 0.60 0.77 0.60 0.76
DU-PLF 0.79 0.60 0.80 0.61 0.68 0.72 0.66 0.72

DU-ALF-PLF 0.77 0.62 0.77 0.62 0.73 0.66 0.73 0.65
DU-ALF-MPF 0.68 0.73 0.70 0.72 0.70 0.70 0.71 0.70

Table 3.3: IPMs developed on fragment X (A or B) and tested on fragment Y (A or
B) as indicated by the notation X ! Y .

3.4.4 A combination of speaker features

From the former experiments it follows that none of the speaker feature sets
leads to a correlation between the objective and the perceptual scores that
can compete with the mean correlation of 0.84 observed between individual
raters and the mean of these raters. In this respect, we have investigated
whether the combination of different feature sets may bridge this gap. We
tested combinations of

• the two alignment-based feature sets DU-PLF and DU-MPF,

• the two alignment-free feature sets DU-ALF-PLF and DU-ALF-MPF,
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• the two phonological feature sets DU-PLF and DU-ALF-PLF, and

• the two phone(m/t)ic feature sets MPF and ALF-MPF.

The results obtained with these combinations are listed in Table 3.4.
Clearly all feature set combinations perform better than the individual fea-

ture sets they are composed of, but in most cases the improvement is not
significant. The IPM incorporated in the present DIA tool achieves a good
PCC but it does not achieve the envisaged RMSE. The combination of the for-
merly proposed DU-MPF and the newly developed DU-ALF-MPF on the other
hand does. Figure 3.3 shows a convincing scatter plot of the perceptual scores
versus the objective scores computed by the IPM designed for this combination.

feature combination RMSE PCC
DU-PLF + DU-MPF 0.61 0.80
DU-ALF-PLF + DU-ALF-MPF 0.68 0.73
DU-PLF + DU-ALF-PLF 0.64 0.74
DU-MPF + DU-ALF-MPF 0.52 0.85

Table 3.4: Predictive power of IPMs built on different combinations of two feature
sets. Listed are RMSE and PCC between the computed results and the means of the
13 perceptual raters. Underlined results differ significantly (p < 0.05) from the best
result, denoted in bold.

For the best combination we have also investigated in more detail how many
features and which features were selected. As we adopted a five-fold cross
validation strategy, 5 models were created and each of these models was on its
turn obtained as a combination of 10 small models each selecting 7 - 8 features.
On average, the combined model incorporated 25 features (range 21-29). Per
fold, statistics were calculated on how many times a feature was selected in
one of the ten small models. Features selected 5 times or more are the MPFs
/r/,/A/,/@/,/i/ and the ALF-MPFs /A_min/ and /N_max/, where /A/ is
the vowel in the Dutch word “man”, /@/ stands for the schwa in “de”, /i/ is the
long vowel of “tien”. Furthermore, /A_min/ is the mean of the valleys for /A/
and /N_max/ is the mean of the peaks for /N/, which is the final nasal sound
of the word “koning”. Apparently, four out of six features are vowel-related. If
we take a closer look at the features, we observe that these vowels define the
diagonal of the vowel trapezium in the (place,height) plane: /i/ determines the
upper-left corner (as it is front and high) while /A/ determines the lower-right
corner (as it is back and low) and /@/ represents the center of this diagonal.
Consequently, the vowel features can represent the amount of variation from the
neutral (central) position the speaker can achieve in two directions. Together
they represent the size of the speaker’s vowel trapezium as a potential factor
affecting his intelligibility.



Computing speech intelligibility 71

1 2 3 4 5 6 7
1

2

3

4

5

6

7

mean perceptual score

co
m

pu
te

d 
sc

or
e

Figure 3.3: Correlation between perceptual and computed scores.

Although few articles describe the speech of people treated with chemo-
radiation therapy, it is known that even chemo-radiation therapy affects the
organic structures and tissues around the tumor location (van der Molen et al.,
2012). Swallowing problems are common, and tongue and palate tissues are af-
fected at least for part of the speakers. Persons with reduced tongue motility are
known to show a strong correlation between intelligibility and vowel trapezium
size (de Bruijn et al., 2009; Neel, 2008).

The fact that tongue motility can be affected in this patient group also
explains the selection of features /r/ and /N_max/ as realizations of the uvular
/r/ and /N/ need good functioning of the back of the tongue. Secondly, van
der Molen et al. (2012) shows that nasality is significantly worsened by CCRT
treatment. Nasality is thus an issue in our dataset, and it is not so surprising
then to notice that a nasal related feature such as /N_max/ is selected.

3.4.4.1 Patient monitoring

Now that we have established an IPM that can mimic evaluations made by a
group of listeners for the comparison of one speaker against another, the next
challenge is to prove that this model can also track trends in an individual
patient’s intelligibility over time.
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First of all we have investigated whether such trends are exposed by the
perceptual scores. To that end we have determined the differences between the
ratings of the same fragment read by the same speaker at times T0 and T1, T1
and T3 and T0 and T3. A former analysis of these data (Clapham et al., 2012)
demonstrated that not all speakers show a clear trend (neither progress nor
deterioration) over time. For each speaker we computed the rating differences
at times T0 and T1, T1 and T3 and T0 and T3 and the PCC between the
differences derived from ratings of one rater and those derived from the mean
ratings (over 13 raters). As revealed by Table 3.5, the PCC are rather low.
Since we did not expect our IPM to outperform human raters, we selected
those speakers for which the human raters seemed to agree on the presence
and direction of the trend. The correlations between one rater and the mean
of the 13 ratings for these speakers are listed in Table 3.5, together with the
number of recordings for which this is the case.

All trends Only clear trends
Times Mean Range Number Mean Range Number
T1-T0 0.56 0.45 - 0.70 93 0.70 0.40 - 0.84 26
T3-T1 0.44 0.17 - 0.62 74 0.75 0.43 - 0.96 8
T3-T0 0.62 0.45 - 0.75 78 0.78 0.60 - 0.89 28

Table 3.5: Inter-rater agreements (PCC) (mean and range over tested speakers)
about speaker trends measured on all trend data and on the data exhibiting a clear
trend. The number of tested speakers is mentioned under the “number” columns.

All trends Only clear trends
Times IPM Mean Range IPM Mean Range
T1-T0 0.41 0.56 0.45 - 0.70 0.51 0.70 0.40 - 0.84
T3-T0 0.62 0.62 0.45 - 0.75 0.82 0.78 0.60 - 0.89

Table 3.6: Correlations on speaker trend level. Results from the IPM are marked in
bold.

Based on the data in Table 3.5, we can conclude that one can only measure
a clear trend from T1 to T3 for 8 speakers. As this is considered insufficient to
measure reliable correlations, we only analyzed the correlations between T0 and
T1 and between T0 and T3. The results of this analysis are listed in Table 3.6.

In the case of T3-T0, the mean human-machine-correlation is as good as the
mean correlation between one rater and the mean rating, and even better for
the clear trends. For T1-T0, it is lower, but nevertheless, the human-machine
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correlation is in the range of human correlations, at least for the cases with a
clear trend. We can therefore conclude that the IPM we developed seems able
to follow the progress of an individual speaker as (un)reliably as a human rater
can.
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Figure 3.4: Measured and predicted trends between T0 and T3 for the speakers
exhibiting a clear trend (see text)

Figure 3.4 shows the means and standard deviations of the T3-T0 differences
in the human ratings for the 26 cases that were categorized as exhibiting a trend.
Also on the Figure one finds the predicted trends. There is a lot of uncertainty
on the human ratings but for 10 out of 13 of the subjects exhibiting a negative
trend, the model also predicts a negative trend. The positive trends are less
pronounced and, likewise, not so well predicted. Needless to say that the plot
for the T1-T0 differences is less convincing given the lower PCC. We conjecture
that it takes more reliable human ratings to generate better automatic trend
predictions.

3.5 Conclusions and future work

In previous work (Middag et al., 2008) we demonstrated that an alignment
based method combining two distinct ASRs can yield good correlations be-
tween subjective (human) and objective (computed) intelligibility scores. More
recently (Middag et al., 2010) we also succeeded in showing that alignment-free
methods have potential as well to predict intelligibility from running speech. In



74 Chapter 3

this paper, we extended our work by proposing a new alignment-free feature
set which is designed to be text-independent and applicable for different lan-
guages. For the time being, we validated this feature set when developed on
Flemish data, on a Dutch dataset, called the NKI-CCRT dataset. Although
Dutch and Flemish are not really two distinct languages, they do represent two
very different regional accents of Dutch.

Comparing results from IPMs (Intelligibility Prediction Models) built on
Flemish and Dutch acoustic models respectively, we could establish that the
alignment based methods are clearly language sensitive whereas the alignment-
free methods are not. Comparing results emerging from IPMs built on different
text fragments, we discovered that all feature sets are largely text-independent,
at least in the absence of reading errors.

Our experiments show that by using one single speaker feature set, we were
unable to create an IPM that is as reliable as a human rater. On the other hand,
by combining the Dutch versions of the feature sets currently used in the DIA
tool we already get a human-machine correlation of 0.80, which is only slightly
worse than human-based evaluations. Combining alignment-free and alignment
based monophone features leads to a model that can compete with a human
rater for comparing one pathological speaker to another. Moreover, the IPM
built on these two feature sets is capable of detecting progress or deterioration
of a patient to the same extent humans can.

As the NKI-CCRT dataset not only contains speech intelligibility ratings
but also ratings concerning articulation, voicing etc., future work will focus on
the further development of a robust diagnosing system that also offers a more
detailed speaker profile concerning articulation, voicing etc. From such a profile
one could then retrieve objective and detailed information about the progress of
a certain patient in the course of a therapy as well as information which could
help determining the right personalized therapy for each patient.
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4
Developing automatic articulation,
phonation and accent assessment

techniques for speakers treated for
advanced head and neck cancer0

Abstract

Purpose: To develop automatic assessment models for assessing the artic-
ulation, phonation and accent of speakers with head and neck cancer (Exper-
iment 1) and to investigate whether the models can track changes over time
(Experiment 2).

Method: Several speech analysis methods for extracting a compact acoustic
feature set that characterizes a speaker’s speech are investigated. The effec-
tiveness of a feature set for assessing a variable is assessed by feeding it to
a linear regression model and by measuring the mean difference between the
outputs of that model for a set of recordings and the corresponding perceptual
scores for the assessed variable (Experiment 1). The models are trained and
tested on recordings of 55 speakers treated non-surgically for advanced oral
cavity, pharynx and larynx cancer. The perceptual scores are average unscaled
ratings of a group of 13 raters. The ability of the models to track changes in
perceptual scores over time is also investigated (Experiment 2).

0
R.P. Clapham, C. Middag, F.J.M. Hilgers, JP. Martens, M.W.M. van den Brekel, R.J.J.H.

van Son. Speech Communication, 59, April 2014, 44-54.
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Results: Experiment 1 has demonstrated that combinations of feature sets
generally result in better models, that the best articulation model outperforms
the average human rater’s performance and that the best accent and phonation
models are deemed competitive. Scatter plots of computed and observed scores
show, however, that especially low perceptual scores are difficult to assess auto-
matically. Experiment 2 has shown that the articulation and phonation models
show only variable success in tracking trends over time and for only one of the
time pairs are they deemed compete with the average human rater (Experiment
2). Nevertheless, there is a significant level of agreement between computed
and observed trends when considering only a coarse classification of the trend
into three classes: clearly positive, clearly negative and minor differences.

Conclusions: A baseline tool to support the multi-dimensional evaluation of
speakers treated non-surgically for advanced head and neck cancer now exists.
More work is required to further improve the models, particularly with respect
to their ability to assess low-quality speech.

4.1 Introduction

Cancer of the head and neck and its treatment can have negative consequences
on the structures and tissues involved in swallowing and speech and voice pro-
duction. For the speech-language pathologist, evaluating a patient’s speech
and voice is an important part of patient management and is necessary for
documenting a patient’s long-term outcome (Verdonck-de Leeuw et al., 2007).
The design and validation of automatic tools to perform “perceptual-like” eval-
uations has become an area of interest for researchers and recently, interesting
results for speech intelligibility (Maier et al., 2009; Middag et al., 2009, 2011,
2014; Van Nuffelen et al., 2009) and phonation (De Bruijn et al., 2009, 2011a;
Maryn et al., 2010) have been reported in the literature.

In this study, we investigate whether a machine can reliably evaluate articu-
lation (perception of the precision of speech production), phonation (perception
of phonation quality) and accent (perception of degree of accent) (see section
4.2.1.3 for details). If these models were to be combined with an existing
model of functional speech intelligibility (Middag et al., 2014), one would have
a powerful automatic tool for the multidimensional evaluation of a speaker. For
modelling, we include the variables articulation and phonation because they
can both be impaired as a result of tumor, cancer treatment such as concomi-
tant chemoradiotherapy (CCRT) or a combination of both tumor and treat-
ment (Jacobi et al., 2010, 2013; Newman et al., 2001; van der Molen et al.,
2012). We also include accent because in the Netherlands there is consider-
able articulatory-acoustic variation as a result of regional variation and social
background (Jacobi, 2009) and because of language background in the case of
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non-native Dutch speakers. Unlike articulation and phonation, accent is not a
clinically relevant aspect but there is a risk that an automatic analysis tech-
nique will be influenced by the gravity of the accent. By modeling accent, we
envisage that clinicians can take the computed accent score into account when
interpreting computed scores of speech intelligibility and articulation. In other
words, if accent is strongly present caution may be warranted when drawing
conclusions on a speaker’s computed scores, which may be underestimated.

The aim of this study is to develop assessment models for the perceptual
variables articulation, accent and phonation and to compare the assessments of
best models with human ratings (Experiment 1). We also investigate whether
articulation and phonation assessment models can track trends over time in the
human ratings of a single speaker (Experiment 2).

4.2 General method

4.2.1 Validation corpus

All audio recordings are taken from a corpus developed by the Netherlands Can-
cer Institute (termed the NKI-CCRT corpus). These recordings were collected
as part of a preventative rehabilitation study on speech, voice and swallow-
ing outcomes for patients after treatment for advanced head and neck cancer
(van der Molen et al., 2012). The perceptual evaluations emerge from a larger
study investigating the use of automatic tools to evaluate perceptual aspects
of speech production for speakers treated for head and neck cancer. Below
we provide an overview of the speakers, stimuli and perceptual data and refer
the reader to van der Molen et al. (2012) and Clapham et al. (2012) for more
information.

4.2.1.1 Speakers

The corpus contains recordings of 55 speakers who received CCRT over a period
of seven weeks for stage III-IV head and neck tumors. Tumors were located in
the oral cavity, nasopharynx, oropharynx, hypopharynx or larynx, and recordings
were made before treatment (T0) (54 speakers), 10-weeks post-treatment (T1)
(48 speakers) and 12-months post-treatment (T3) (39 speakers). The main
reason for loss of speakers at follow-up was due to morbidity and mortality
(van der Molen et al., 2012). Due to an administrative miss, the T0 recording
of one speaker was not included. Average speaker age at T0 was 57 years
(range 32-79 years) and approximately 15% of the speakers were non-native
Dutch speakers (Middag et al., 2014).
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4.2.1.2 Stimuli

All speakers read the same 189-word Dutch text of neutral content. Note that
not all speakers contributed recordings at follow-up. The corpus contains only
the first 138 words of each recording: the first 70 words are referred to as
fragment A and the next 68 words are referred to as fragment B. Fragment
A contains 49 unique words and fragment B contains 50 unique words. The
corpus contains 141 fragment A recordings and 140 fragment B recordings (one
speaker only read fragment A).

4.2.1.3 Perceptual analysis

Thirteen recently graduated or about to graduate speech-language pathologists
evaluated all recordings (stimuli) in an online, self-paced experiment. All listen-
ers were female, native Dutch speakers (average age 23.7 years). They could
replay a recording as often as they wished and no stimuli anchors were pro-
vided. All recordings were presented in a randomized order and the first 10
stimuli reappeared in the final stimuli and were used to check the intra-rater
consistency. They were not included in the corpus for the development of as-
sessment models. Although listeners rated several aspects of speech and voice,
the variables of interest in this paper are articulation, phonation and accent.

Articulation Listeners were instructed to evaluate the general precision of
vowel and consonant production as compared to normal running speech on
a 5-point scale with descriptors at 1 (extremely imprecise articulation) and 5
(normal/precise articulation). Precise articulation was defined as correct man-
ner and place of production and clear coordination between sounds.

Phonation Listeners were instructed to evaluate the degree to which phona-
tion deviated from what they considered normal. Listeners rated phonation on
a 5-point scale with descriptors at 1 (very deviant phonation) and 5 (normal
phonation).

Accent Listeners were asked to evaluate the weight of the speaker’s dialect or
accent as compared to standard Dutch (defined as the speech commonly heard
on radio and television). Listeners evaluated their perception of accent on a
5-point scale with descriptors at 1 (heavy accent) and 5 (normal/no accent).

Agreement and reliability In terms of intra-rater agreement on the 10
test-retest items, the average percentage exact agreement is 87% for articu-
lation (range 60-100%), 55% for phonation (range 40-80%) and 53% for ac-
cent (range 30-80%). The average percentage close agreement (differences
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not larger than 1 point on the 5-point scale) for all variables was above 88%
(articulation 95%, accent 94% and phonation 89%).

For this study, we also calculated the inter-rater reliability of the human
ratings as the average root mean square error (RMSE) and Pearson Correlation
Coefficient (PCC) between the ratings of one individual rater and the group
mean scores (see Table 4.1). Although inter-rater reliability is low in some
cases, the most deviant rater differs per variable; as such, there is no single
rater we can exclude as being unreliable for all perceptual variables. We thus
continue to use the average unscaled ratings of the group (means over all 13
perceptual scores) as our reference scores and the average RMSE and PCC as
measures of human performance.

Variable RMSE PCC
Articulation 0.54 (0.36-0.76) [R04] 0.75 (0.56-0.84) [R11]
Accent 0.57 (0.43-0.91) [R06] 0.78 (0.65-0.89) [R02]
phonation 0.56 (0.36-0.79) [R06] 0.66 (0.47-0.78) [R07]

Note. Values represent the average RMSE and PCC between one individual rater and the group mean.

Table 4.1: Average (and range) of rater reliability data and subject codes of the
raters with the highest RMSE and lowest PCC values.

4.2.2 Automatic evaluation tools

Regardless of the variable being modeled, assessment of that variable involves
three stages of processing: (1) acoustic front-end analysis of the speech signal,
(2) extraction of speaker features and (3) conversion of speaker features to
computed scores by means of a so-called assessment model.

During stage one, the acoustic front-end processes Hamming windowed-
segments of 25 ms, called frames, and subsequent frames are shifted over 10
ms. Per time step t it extracts an acoustic parameter vector Xt of length 39
describing the total energy and the shape of the spectrum of the segment (for
more details see Middag et al. 2014).

During the second stage, all the vectors Xt of a speaker’s recording are an-
alyzed and this analysis generates a number of global features that characterize
the speaker and that are therefore called speaker features. This paper investi-
gates the power of five speaker feature sets which are described in detail below.
Two of the speaker feature sets are derived from speech-to-text alignment by
means of an automatic speech recognizer (ASR). Two other speaker feature sets
emerge from a plain analysis of the temporal evolutions of the frame-wise out-
puts of a phonological feature extractor (no speech-to-text alignment involved).
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These four feature sets were previously found successful for assessing both sin-
gle word and running speech intelligibility (Middag et al., 2009, 2011). Given
the relationship between speech intelligibility and phonation quality (De Bodt
et al., 2002; Moerman et al., 2006), we anticipate that these feature sets will
also be effective for assessing articulation and accent. As one of our aims is
to assess phonation, we also include a set of pitch and voicing related features
that are known to correlate with that variable (Moerman et al., 2004).

During the final stage, speaker features are converted into computed scores
by means of an assessment model. In this paper, we employ linear regression
models. The training of such models involves an automatic selection of a
compact subset of the speaker features (to ensure generalization to unseen
data) and a computation of the regression coefficients. The model development
approach is described in more detail below.

4.2.2.1 Speaker features emerging from speech-to-text alignment

Two speaker feature sets are derived after a forced alignment. To this end, an
ASR matches the acoustic models corresponding to the phonetic transcription
of the target text with the speech uttered by the patient. Intuitively, the features
emerging from this alignment represent how well, according to the ASR, the
target text is realized by the speaker (i.e. how closely the speech fits the models
of the ASR given the transcription).

Phonological features (PLFs) PLFs reflect how well binary phonological
properties related to manner of articulation (e.g. burst), place of articulation
(e.g. bilabial) and voicing (e.g. voiced) are present or absent at the right
times. The extraction of these features involves an ASR encompassing a neural
network that computes posterior probabilities of 24 binary phonological proper-
ties for each speech frame. To establish (during alignment) how likely a frame
is part of a certain phone (defined as a basic speech sound) the ASR computes
the geometric mean of the posterior probabilities of the different phonological
properties that are assumed to be true for that phone (Stouten and Martens,
2006). The neural network is trained on read speech from the Spoken Dutch
Corpus (Schuurman et al., 2003).

Once all frames are assigned to a phone, the PLFs are computed as follows:
(1) consider all frames assigned to a phone having a canonical value A (either
1 or 0) for a certain phonological property and (2) compute the mean of the
corresponding neural network output over all these frames (see Stouten and
Martens, 2006). By repeating this for all 24 phonological properties and for
two sets of phones, those with an A = 1 and those with an A = 0, one obtains
48 phonological features to characterize the speech of the investigated speaker.
Positive PLFs (derived using A = 1) reflect the presence of a phonological
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property in the acoustic signal at times the phonological property is supposed
to be present (e.g. the presence of voicing during utterance of an /a/). Negative
PLFs (derived using A = 0) reflect the presence of a phonological property at
times it is not supposed to be present (e.g. the presence of voicing while uttering
a /p/). Together, the 48 features are expected to reveal how well the speaker
has performed the various articulatory actions involved in the speech production.

Monophone features (MPFs) MPFs reflect how well context-independent
phones (also called monophones) such as /s/, /z/ and /A/ are realized. The
creation of these features involves an ASR that internally works with approx-
imately 1600 context-dependent phone states (also called triphone states).
These states are trained by means of expectation maximization on speech ma-
terial from the Spoken Dutch Corpus (Schuurman et al., 2003). Once each
frame is assigned to a triphone state, the MPFs can be computed as follows:
(1) consider all frames assigned to a state of a certain phone and (2) compute
the mean posterior probability of this phone over all these frames. Repeating
this for all 40 phones of the language results in a set of 40 monophone features
that characterize the speech of the investigated speaker.

4.2.2.2 Speaker features not emerging from a speech-to-text alignment

We also discern two speaker feature sets that emerge from a speech analysis
that does not require knowledge of the input text.

Alignment-free phonological features (ALF.PLFs) ALF.PLFs follow from
a plain analysis of the temporal evolutions of the individual outputs of a neural
network that computes posterior probabilities of binary (on/off) and ternary
(on/off/intermediate) phonological properties (for details see Middag et al.,
2010). Per output, the temporal analysis determines characteristics such as
mean, standard deviation, percentage of time high, intermediate and low, mean
of the peaks (maxima) and mean time needed to make a transition from low
to high. In total, this analysis yields 300 features. The hypothesis is that
temporal fluctuations in the network outputs can reveal articulatory deficiencies,
regardless of the exact phonetic content of the text that was read, at least as
long as this text is sufficiently rich in phonetic content.

Alignment-free phonetic features (ALF.MPFs) ALF.MPFs follow from a
plain analysis of posterior phone probabilities that can be retrieved from the
outputs of the neural network that gave rise to the ALF.PLFs. The conversion
of network outputs to posterior phone probabilities (scores) is achieved in the
same way as before (creation of MPFs).
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Per phone one considers all frames and one computes (1) the mean and
(2) the standard deviation of the corresponding phone score, as well as (3) the
mean of the peaks (maxima) and (4) the valleys (minima) found in the temporal
evolution of that score. In addition, one also computes (5) the fraction of the
time the phone is the winner (gets the maximal score) and (6) the mean score
of the considered phone over all frames. The latter two quantities are divided
by the expectations one can derive from the expected phone frequencies and
the average phone durations. This way, one obtains 6 features per phone.
Repeating this for all 55 phones (40 monophones, 6 closures and 6 burst sounds
for modeling the plosives, a glottis and two silence symbols to accommodate
inter and intra-sentence pauses), we obtain 330 (= 6 * 55) ALF.MPFs in total.

Pitch and voicing related features (AMPEX) Eight pitch and voicing re-
lated parameters (the percentage of speech frames being classified as voiced,
the jitter of the pitch in voiced frames, etc.) are extracted from the frame level
outputs of the AMPEX pitch and voicing detector proposed by Van Immerseel
and Martens (1996). These features have already been employed with success
for pathological speech assessment (Moerman et al., 2004) and were therefore
anticipated to be suitable for the envisaged phonation assessment. The program
to extract the features is freely available1.

4.2.3 Performance criterion

Model performance is characterized by the root mean square error (RMSE)
and the Pearson correlation coefficient (PCC) between computed scores and
average unscaled ratings of the group (means over 13 individual human ratings
are considered as ‘ground truth’). The aim is to pursue low RMSE and high
PCC values. Human performance is defined as the RMSE and PCC between
the ratings of an individual and the same ground truth.

4.3 Experiment 1

4.3.1 Objective

The first objective of this study is to develop models for computing “perceptual-
like” scores of articulation, accent and phonation. We discern single-feature
assessment models that use only one features set (either PLF, MPF, ALF.PLF,
ALF.MPF or AMPEX) and multiple-feature models that use a combination of
two or three feature sets (PLF+MPF, PLF+ALF.PLF, MPF+ALF.MPF and

1
http://dssp.elis.ugent.be/downloads-software
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PLF+ALF.PLF+AMPEX). Model performance is considered with respect to
(i) other models and (ii) human performance.

4.3.2 Method

The assessment models are trained and evaluated using a 5-fold cross validation
strategy. Each fold is used once as a validation set for a model that is developed
on the remaining folds as the training set. The recordings of a particular speaker
always belong to the same fold. During training, we create ten random divisions
of the training set into two equally large parts: one part for selecting the features
to use and the other part for estimating the regression coefficients for these
features. The ten simple models emerging from this step are then merged into
one model which utilizes all features that were selected by the ten simple models
with regression coefficients that are equal to the averages of the coefficients of
the simple models (0 is assumed for a model not selecting a coefficient). This
approach is called Ensemble Linear Regression (Breiman, 1996) and it allows us
to inspect how often the simple models select a particular feature (between 0
and 10 times per fold). We refer the reader to Middag et al. (2014) for further
details.

When comparing models, we consider the model with the lowest RMSE as
the best model. If two models have the same RMSE, we prefer the model with
the largest PCC. We use the Wilcoxon signed rank test (p < .01, a conser-
vative p-value to account for multiple comparisons) to measure the statistical
significance between the performances of the best model and runner-up models.

When comparing model performance to human performance, we consider
the model better if both the RMSE is lower and the PCC is higher than that
of the average human rater (the latter data are presented in Table 4.1). We
consider the model competitive if either its RMSE is lower or its PCC is higher
than that of the average human rater.

4.3.3 Results

4.3.3.1 Articulation assessment models

Performances for single-feature and multiple-feature articulation models are
listed on the left-hand side of Table 4.2. Four single-feature models are com-
petitive with human raters, but the AMPEX model is unable to reach that level
most likely because it does not encompass features related to place and manner
of articulation. Although the best multiple-feature model is not significantly
better than the best single-feature PLF model, multiple-feature models do con-
sistently yield lower RMSE and higher PCC values than single-feature models.
The table also reveals that there is no clear difference between monophone and
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phonological features.
The best model is MPF+ALF.MPF and it surpasses human performance.

Figure 4.1a displays a scatter plot of the computed scores (model) and mean
unscaled perceptual scores (human) for that model. Table 4.3 lists the features
that were selected more than 10 times (out of 50, coming from 5 folds and
maximum 10 times per fold) during ensemble linear regression. The most
selected features are six consonant features related to the production of /s/,
/n/, /l/, /d/ and five vowel features related to /i/ (‘liep’), /A/ (‘lat’), /u/
(‘voer’), /@/ (‘de’) and /Au/ (‘koud’).

4.3.3.2 Accent assessment models

Performances for single-feature and multiple-feature accent models are listed
in the middle section of Table 4.2. Only one single-feature model, namely
PLF, is competitive with a human rater. Again, AMPEX is the weakest model.
All multiple-feature models are competitive with a human rater and there is
little difference between models. MPF+ALF.MPF is the best model. Figure
4.1b displays a scatter plot of the computed scores (model) and mean unscaled
perceptual scores (human) for this model. The most selected features for this
best model are three vowel features related to /9y/ (‘huis’), /A/ (‘lat’) and /y/
(‘buut’) and two consonant features related to /n/ and /z/.

4.3.3.3 Phonation assessment models

Performances for single-feature and multiple-feature models are listed in the
right-hand side of Table 4.2. Only two single-feature models (PLF and AM-
PEX) can be deemed competitive with a human rater. The AMPEX model
now has a slight advantage over the phonological and monophone models.
Combining phonological features and monophone features only results in small
improvements, but adding AMPEX as a third feature set leads to a significant
improvement and yields a model that is competitive with the average human
rater. Figure 4.1c displays a scatter plot of the computed scores (model) and
mean unscaled perceptual scores (human). The plot shows that this best model
fails when the perceptual score is low.

The most frequently selected features are related to the presence of voicing
(average voicing evidence in voiced frames [AVE], percentage of voiced speech
frames [VSS], percentage of voiced frames [PVF] and mean time required to
switch from unvoiced to voiced [unvoiced-voiced]). Other frequently selected
features are related to the rate of movement from back to front, the inclusion
of the nasal cavity (nasality, vowel nasality) and trill (Dutch /r/ is variable and
the trill variant can be produced as an alveolar or uvular trill (Rietveld and
Van Heuven, 1997). Difficulty producing uvular trills may indicate insufficient
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control of the velum).

Feature set(s) in model Articulation Accent Phonation
RMSE (PCC) RMSE (PCC) RMSE (PCC)

Single-feature models
PLF 0.44 (0.75) 0.56 (0.72) 0.55 (0.39) *
MPF 0.45 (0.74) * 0.59 (0.67) * 0.59 (0.24) *
ALF.PLF 0.51 (0.66) * 0.68 (0.55) * 0.58 (0.33) *
ALF.MPF 0.45 (0.75) * 0.65 (0.64) * 0.60 (0.23) *
AMPEX 0.66 (0.24) * 0.82 (0.30) * 0.55 (0.43) *

Multiple-feature models
PLF+MPF 0.44 (0.75) 0.56 (0.71) * 0.54 (0.42) *
PLF+ALF.PLF 0.44 (0.78) 0.55 (0.74) 0.53 (0.47) *
MPF+ALF.MPF 0.42 (0.80) 0.54 (0.77) 0.58 (0.27) *
PLF+ALF.PLF+AMPEX 0.44 (0.78) 0.56 (0.71) 0.46 (0.62)

Human performance 0.54 (0.75) 0.57 (0.78) 0.56 (0.66)

Note. In each column, the best performing model is highlighted in bold and compared to the other

models for that variable (* = significantly different at p < .01). Double underlining is used to

highlight models outperforming the average human rater and single underlining to highlight models

with competitive performance. Human performance is provide to aid comparison.

Table 4.2: Performances of assessment models and target performance (human
performance) for the three variables

4.3.4 Discussion

The best articulation model (RMSE 0.42; PCC 0.80) outperforms the average
human rater’s performance (RMSE 0.54; PCC 0.77) and the best accent and
phonation models are competitive. The scatter plots of computed versus mean
perceptual scores for all best models confirm the finding by Van Nuffelen et al.
(2009) that low perceptual scores are difficult to predict. In both Van Nuffelen
et al. and our study, this may be due to the low prevalence of speakers with low
perceptual scores in the corpus, and in the case of phonation, to the failures
of the pitch and voicing detector (Manfredi et al., 2011). Ideally, a corpus for
model training would have a balanced distribution of to-be-modelled data but
when data comes from clinical populations this is often not the case. Developing
separate models for lower and for higher perceptual scores or weighting the
perceptual scores may improve prediction accuracy.

For the articulation and accent models, combining feature sets generally
improves performance, but this improvement is not significant in a statistical
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(c) Voice quality

Figure 4.1: Scatter plots of the computed scores (model) and mean unscaled
perceptual scores (human) for the variables (a) articulation (model
MPF+ALF.MPF), (b) accent (model MPF+ALF.MPF) and (c) phonation (model
PLF+ALF.PLF+AMPEX). The line displays the ideal relationship between the
computed and perceptual scores.
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Articulation Accent Phonation
MPF+ALF.MPF MPF+ALF.MPF PLF+ALF.PLF+AMPEX

/i/ (44) /9y/ (41) AVEAMPEX (35)
/s/ (36) /A/ (38) PVSAMPEX (28)
/n/a (28) /n/a (25) PVF (22)
/l/ (25) /y/a (19) vowel (22)
/l/a (23) /z/c (15) unvoiced-voicedd (19)
/A/ (22) nasalitye (12)
/u/ (16) front-backf (12)
/s/a (16) trill (11)
/d/ (15) vowel nasalityg (11)
/@/ (15)
/Au/b (11)

Note. Monophone features are given in SAMPA notation. AVE = average voicing evidence in voiced

frames. PVS = % of voiced speech frames. PVF = % of voiced frames.

a
percentage of frames x was recognized.

b
mean evidence of feature x over all frames in which x

was recognized.
c

SD of probability of /z/.
d

mean time needed to go from unvoiced voiced.
e

mean

minimum value for relevance of consonant nasality.
f

mean time needed to go from relevant to not

relevant in front-back aspect.
g

SD of vowel nasality probability in frames in which vowel nasality is

present.

Table 4.3: Speaker features selected more than 10 times during the cross-validation
process of model development for the best articulation, accent and phonation
models. The number of times selected is displayed between parentheses. See Section
4.3.2 for details.

sense. Three multiple-feature articulation models outperform the average hu-
man rater, whereas all multiple-feature accent models are competitive. The
strong performance of the multiple-feature set model which includes the AM-
PEX features is not surprising as the AMPEX features were designed for the
assessment of overall phonation (Moerman et al., 2004). The fact that com-
bining AMPEX with PLF and ALF.PLF leads to higher performance suggests
that the feature sets represent partly complementary views on phonation.

It is difficult to compare our articulation and phonation assessment results
with other studies as we are unaware of any studies focusing on automatic
evaluation of articulation for speakers treated non-surgically for cancer of the
head and neck. In De Bruijn et al. (2011b) an artificial neural network is used
to generate acoustic features related to plosive production by speakers treated
with surgery and radiotherapy for oral and oropharyngeal cancer. However,
the correlation coefficients between these features and the perceptual scores
of articulation were below 0.40. The higher proportion of speakers with low
perceptual scores in De Bruijn et al. may be partly responsible for this low



92 Chapter 4

correlation coefficient. Note that the surgical procedures within the oral cavity
(present in the data of De Bruijn et al.) may have a larger effect on articulation
production than non-surgical treatment (present in our data). Haderlein et al.
(2007) reported PCCs above 0.70 between computed scores and perceptual
scores of phonation made on a 5-point scale for a small group of tracheoe-
sophageal speakers. Maryn et al. (2010) reported a correlation coefficient of
0.796 between the Acoustic phonation Index and a mean perceptual score of the
overall grade of dysphonia made on a 4-point scale for a group of 33 dysphonic
and 6 control speakers.

Features selected by the articulation assessment models overlap with those
selected by a speech intelligibility assessment model in Middag et al. (2014).
The overlap includes vowels from the diagonal of the vowel trapezium (/i/,
/@/, /A/) and features related to nasality. This is not surprising given the high
correlation between articulation and speech intelligibility scores. One of the
main differences between articulation and speech intelligibility models is that
the former select more consonant-related than vowel-related features whereas
this pattern is reversed in the latter. As a whole, the features selected in the
articulation models appear to be related to tongue movement in the diagonal
of the vowel trapezium and to production of anterior lingual consonants. One
explanation as to their inclusion is that the studied speakers have difficulty with
producing anterior lingual consonants (Newman et al., 2001) and that realiza-
tions deviate from acoustic models based on healthy speakers. An alternative
explanation is that the model selects features with the potential to discriminate
between scores of speakers with tumors in different locations. A recent study
by Jacobi et al. (2013) on our speakers showed significant differences between
speakers’ acoustic measures related to vowel space, production of stops and
fricatives and nasality that can be owed to tumor location.

Unlike the articulation assessment model, the best accent assessment model
does not focus on differentiating vowels in the vowel trapezium, but rather sug-
gests that differentiating high and low central vowels is important for predicting
perceptual accent scores. Selection of the feature related to the alveolar frica-
tive /z/ may reflect regional voicing variation (Kissine et al., 2003).

Features selected by the phonation model may be understood in terms of the
source-filter model of speech production, that is, the effect of tumor/treatment
at the level of the vocal-source (i.e. effect on phonation) and at the level of
the vocal-tract filter (i.e. effect on resonance). We would expect that at the
level of the larynx, a tumor and its treatment would have a greater effect on
phonation whereas a tumor in the nasopharynx or oropharynx area is likely to
have an effect on the speaker’s ability to use the nasal cavity as a filter. The
features selected in the assessment models indicate that the human rater of
phonation takes both phonation and resonance information into account.
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4.4 Experiment 2

4.4.1 Objective

The second objective of this study is to investigate whether the best articulation
model (MPF+ALF.MPF) and phonation model (PLF+ALF.PLF+AMPEX) can
track changes over time in the perceptual scores of an individual patient. We
exclude the variable accent from this experiment, as it is not a clinically relevant
variable.

4.4.2 Method

We describe trends by means of differences between perceptual scores on two
evaluation moments. Given the preliminary nature of this study, we only con-
sider patients for which all raters agreed on the direction of change (either
positive/no change or negative/no change) between a given time-pair. This
way, we retain 57 score differences for articulation (19 for T0-T1; 17 for T1-
T3; 21 for T0-T3) and 61 for phonation (27 for T0-T1; 18 for T1-T3; 16 for
T0-T3). Note that the imbalance in the data pairs is a result of morbidity and
mortality and our exclusion criterion.

We investigate the model and rater capacities to perform a three-fold trend
classification: clearly negative (score difference  -0.5), minor differences, and
clearly positive (score difference � 0.5). Our choice of class boundaries leads to
comparable sizes for the three trend categories. Agreement between computed
and mean perceptual score differences is calculated using the kappa statistic
(linear weighting). We use a resampling method without replacement to assess
whether the observed kappa value is due to chance or not.

As in Experiment 1, we characterize the assessment of changes by means
of the RMSE and PCC between the computed score differences (differences
between two evaluation moments) and the corresponding mean perceptual score
differences. The same criteria as before are used for declaring a model better
(i.e. lower RMSE and higher PCC) or competitive (i.e. either the RMSE is
lower or the PCC is higher) with respect to the average human rater.

4.4.3 Results

The upper-half of Table 4.4 lists the performance for the MPF+ALF.MPF artic-
ulation model and the PLF+ALF.PLF+AMPEX phonation model for tracking
changes between two evaluation moments. Both the articulation and phonation
model outperform the human rater for T0-T3, but not for the other time-pairs.
For T0-T1, the phonation model is just competitive.
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Articulation Phonation
Eval. n Rater Model n Rater Model

RMSE (PCC) RMSE (PCC) RMSE (PCC) RMSE (PCC)

T0-T1 19 0.58 (0.69) 0.58 (0.22) 27 0.73 (0.77) 0.60 (0.76)
T1-T3 17 0.62 (0.74) 0.69 (0.04) 18 0.60 (0.75) 0.61 (0.45)
T0-T3 21 0.57 (0.70) 0.40 (0.72) 16 0.64 (0.79) 0.45 (0.86)

Note. Performance for computing changes between two evaluation moments is for cases where raters

agree on the direction of trend. Double underlined values highlight comparisons outperforming the

average rater and single underlined values highlight models with competitive performance. T0 =

pre-CCRT. T1 = 10-weeks post CCRT. T3 = 12-months post CCRT. n is the number of recordings

included in the comparison.

Table 4.4: Human rater and model performance for tracking changes in articulation
and phonation over time

Table 4.5 shows that the accuracy of an articulation trend classification
(positive, minor, negative change) is 72% (41 out of 57 cases), corresponding
to a significant degree of agreement between computed and mean perceptual
trends ( = 0.37, p < .001). The accuracy of a phonation trend classification
is 64% (39 out of 61 cases), corresponding to a significant degree of agreement
between computed and mean perceptual trends ( = 0.45, p < .001). The
different kappa values for the two variables likely reflect properties of the data
distribution, that is, clearer trends for phonation. As can be seen in Table 4.5,
all disagreements are between adjacent classes. The models are clearly biased
towards deciding that there is no clear trend.

(a) Articulation
Computed Observed

- ± +
- 3 0 0
± 7 35 8
+ 0 1 3

(b) Phonation
Computed Observed

- ± +
- 7 3 0
± 14 25 4
+ 0 1 7

Table 4.5: Contingency table between computed and observed trends for clearly
negative change (-), minor change (±) or clearly positive change (+).

4.4.4 Discussion

Although the RMSE values are relatively high for both articulation and phona-
tion changes, inspection of the trends indicates that most computed trends
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Computed Observed
- ± +

- 7 3 0
± 14 25 4
+ 0 1 7
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Figure 4.2: Difference in scores between two evaluation moments for articulation and
phonation. The continuous line displays the mean difference in perceptual scores
(vertical lines indicate the range) and the circles display the difference in computed
scores.

fall within the range of perceptual trends and can thus be considered accept-
able (see plots in Figure 4.2 which correspond to the best and worst time pair
respectively).

The plots also show that the observed trends are often close to zero and
that human raters only indicate a clear difference between evaluation moments
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(± 1) in relatively few cases. This means that the PCC between computed
and human scores will mainly be determined by how well the assessment model
evaluates these few cases.

The trends in pairs involving T1 are badly predicted. Our first hypothesis
was that this was because the computed score at T1 differed more from the
mean perceptual scores than at T0 and T3. This did not turn out to be the
case. Another hypothesis was that there is a larger percentage of low perceptual
scores ( 3, the point where the model appears to fail) from which to derive
the trends in the time pairs including T1. For articulation, these percentages
are 7% for T0-T3, 11% for T0-T1 and 12% for T1-T3. For phonation, these
percentages are 6% for T0-T3, 15% for T0-T1 and 9% for T1-T3. Although
these figures do not confirm this hypothesis, they do not contradict it either.

Acoustic analysis of the speakers from this corpus revealed that there are
acoustic differences in vowel and consonant production between evaluation mo-
ments (Jacobi et al., 2013), however, these changes may not be perceptually
salient and/or the 5-point scale used for collection of perceptual scores may
not allow fine-grained differentiation. Transforming the perceptual scores as
proposed by Shrivastav et al. (2005) may reduce the inter-rater variation due
to differences in listener anchor points on the scale and, thereby, improve the
reliability of the ground truth that is used to train the models. An alternative
experimental set-up involving paired-comparison evaluations, such as that used
in van der Molen et al. (2012), was not used in perceptual data collection as
this method allows neither comparison of the speaker to a reference healthy
speaker nor to other speakers from the same population.

4.5 Summary and concluding discussion

The assessment models presented in this paper have been developed and tested
on a group of Dutch speakers with cancer of the head and neck who contributed
speech recordings before and after non-surgical treatment. The aims of this
study were (i) to investigate whether perceptual scores of articulation, accent
and phonation can be automatically assessed with an accuracy comparable with
that of a human rater and (ii) to investigate whether articulation and phonation
assessment models can reveal trends in the articulation and phonation over time.

We have shown that speaker features emerging from a forced alignment be-
tween the speech and the text as well as speaker features emerging from a plain
analysis of the temporal evaluation of acoustic model outputs give rise to good
assessment models but that combining feature sets generally leads to improved
model performance. The correlations between computed and perceptual scores
are often within the range of human performance and, in the case of articula-
tion, the model outperforms the average human rater’s performance. Plots of
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computed and observed perceptual scores do show however that models have
a tendency to produce over-optimistic scores for bad speakers.

Despite the overall positive performance of the models in computing per-
ceptual scores, the articulation and phonation assessment models attain varying
levels of success in tracking changes over time. Nevertheless, categorization of
the trends in three classes (clearly positive, minor, clearly negative) can be
achieved at human performance level.

There seems to be some evidence that a part of the problem resides from the
fact that human scores assigned to low-quality speech also tend to be unreliable,
and consequently, this unreliability is bound to transfer to the models derived
thereof. We envisage that future work focuses on removing some of the inter-
rater variability by normalizing perceptual scores, by developing rater-specific
assessment models or by combining the two approaches (i.e. rater-specific
models based on normalized perceptual scores).
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Automatic tracheoesophageal voice

typing using acoustic features0

Abstract

The acoustics of isolated vowels, e.g. of /a/, have in many studies been linked
to pathological voice types, such as tracheoesophageal (TE) voice. To study
the possibilities of objective and automatic classification of pathological TE
voice types, the acoustic features of /a/ were quantified and subsequently clas-
sified using a suit of machine learning technologies. Best classification was
achieved by using a voiced-voiceless measurement and the harmonics-to-noise
ratio. Other common acoustic features were correlated to pathological type
as well, but were less distinctive in classification. We conclude that for objec-
tive and automatic classification of TE voice pathology, voicing distinction and
harmonics-to-noise ratio are most relevant.

5.1 Introduction

Cancer of the larynx as well as most treatment modalities have a negative impact
on a person’s voice and speech quality. In the case of advanced laryngeal
cancer, a total laryngectomy is often unavoidable. Although many patients
develop functional alaryngeal speech by means of a prosthetic device to direct

0
R.P. Clapham, C.J. Van As-Brooks, M.W. M. van den Brekel, F.J. M. Hilgers, R.J. J. H.

Van Son. Proceedings of INTERSPEECH 2013, Lyon, France, 2162-2166.
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air towards the neo-glottis, voice quality is variable (Haderlein et al., 2007;
Jongmans, 2008; van As, 2001).

Presently, the prospects for the development of an adequate substitute voice
due to the use of prosthetic devices are good (Jongmans, 2008; Op de Coul
et al., 2005; van As, 2001). Subsequent speech therapy will then aim at further
improving voice quality and speech intelligibility. Studies have shown that im-
provements of speech quality and intelligibility can indeed improve the quality-
of-life (QoL) of patients (Jongmans, 2008). To support and evaluate voice
quality after total laryngectomy and subsequent speech therapy, efforts have
recently been made to introduce objective methods and automatic evaluations
of the intelligibility and quality of alaryngeal speech (Haderlein et al., 2007;
Moerman et al., 2006).

A three-type classification of voice quality on sustained vowels by Titze
(Titze, 1995; Zhang et al., 2008) was adapted by Van As-Brooks (van As, 2001;
van As-Brooks et al., 2006) to a four-type classification for tracheoesophageal
speech (TES) on sustained /a/, i.e., acoustic signal typing (AST). Both classi-
fications were based on spectrographic information of a sustained vowel. Both
classification systems have consistent links to perceptual evaluation of voice
quality of these speakers by speech and language therapists (SLTs).

The link between an objective classification system of voice pathology and
the auditory perception of voice quality offers an opportunity to link objective
and automatic acoustic measurements to the perception of pathology. Many
studies have investigated the correlation between individual acoustic measures
and TES voice pathology, see Table 5.1 for a short list.

It is clear that many acoustic variables are related to the severity of TES
voice pathology. However, it is not clear how these should be weighted and
combined to get a better understanding of TES voicing pathology. Ideally,
one would like to be able to “predict” the AST class from acoustic parameter
measurements alone. Such automatic classifications are the subject of machine
learning (Guyon and Elisseeff, 2003; Ladha and Deepa, 2011; Maindonald and
Braun, 2006).

The current study is part of an ongoing effort to understand the evaluation
of TE speech and the development of diagnostic aids. The question we want to
answer here is: To what extent can acoustic features of sustained /a/ contribute
to predicting and understanding the severity of voice pathology in TES?
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Acoustic measure Reference Type Significant

Percentage voiced Kazi et al. (2009) Percept. +
Moerman et al. (2004) Percept ns

Max. voicing duration Moerman et al. (2004) Percept ns
F0 van As-Brooks et al. (2006) AST ns

van Gogh et al. (2005) AST ns
Kazi et al. (2009) Percept ns

F0 variability van As-Brooks et al. (2006) AST +
van Gogh et al. (2005) AST +
Kazi et al. (2009) Percept +

Shimmer Kazi et al. (2009) Percept +
Jitter van As-Brooks et al. (2006) AST ns
HNR Maryn et al. (2009) Percept. ns

Moerman et al. (2004) Percept ns
van As-Brooks et al. (2006) AST +

HNR <700 Hz van Gogh et al. (2005) AST +
HNR �700 Hz van Gogh et al. (2005) AST ns
High frequency noise van Gogh et al. (2005) AST ns
GNE van As-Brooks et al. (2006) AST ns
Rahmonic Intensity Maryn et al. (2009) Percept ns

van Gogh et al. (2005) AST ns
BED van As-Brooks et al. (2006) AST +
D?

2, SampEn? Yan et al. (2013) Percept +

Table 5.1: Overview of acoustic parameters in studies investigating TES vowel voice
quality. AST: Acoustic Signal Typing (van As, 2001; van As-Brooks et al., 2006),
Percept..: Perceptual evaluation. ns: Not significant, +: Significant (versus normal),
?: Not included in this study. See section 5.2.3

5.2 Materials and methods

5.2.1 Speech recordings

We used a corpus containing sustained vowel /a/ of 87 TE speakers. Record-
ings were made between 1995 and 2009 as part of several unrelated studies. At
the time of the recordings all speakers provided informed consent allowing the
recordings to be used for research purposes within the institute. In total there
were 74 male and 13 female speakers. Age at treatment was 38-85 (median
age 57). All speakers produced sustained /a/ vowels as part of a larger assess-
ment battery. As some speakers had provided multiple recordings for various
research projects over the 14 years, we selected the /a/ recording with the ear-
liest recording date. At the time of recording, 83 speakers had a Provox1 or
Provox2 prosthesis and the remaining four speakers had a Provox Vega pros-
thesis (three speakers a 22.5 Fr and one speaker a 17 Fr) (Hilgers and Balm,
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2007; Hilgers et al., 1997, 2010).
Due to the fact that recordings were made over more than a decade as part

of unrelated studies, a range of equipment and media were used for recording
and storage, but this is not expected to alter acoustic measures below 5 kHz
(van Son, 2005). For this study, all recordings were first digitized and converted
to 44.1 kHz sampling rate and 16-bit Signed Integer PCM encoding. No audio
compression had been used on the recordings.

5.2.2 TEVA and acoustic signal typing

The NKI developed a computer program (Tracheoesophageal Voice Analysis
tool, TEVA; van Son, 2012) to assist researchers and SLPs to identify acoustic
signal types. TEVA runs as a Praat extension (Boersma, 2001; Boersma and
Weenink, 2009) and both programs are available under an Open Source License
(GPL). Acoustic signal type classification for TE speakers requires an observer
to classify a segment of a spectrogram into one of four signal types: stable and
harmonic (1), stable with at least one harmonic (2), unstable or partly harmonic
(3) and barely harmonic (4) which corresponds roughly to a severity scale from
good to bad (van As-Brooks et al., 2006). As observers may differ in how they
arrive at a classification, a consensus procedure was used for segment selection
and classification into signal type.

Using the TEVA program, two experienced SLPs (authors Clapham and
Van As-Brooks), classified all 87 recordings into signal type based on visual
inspection of the spectrogram. They were blind to speaker characteristics (e.g.
prosthesis type or gender) and were unable to listen to the recordings.

The spectrograms were classified according to AST over two steps. During
step one, each rater independently classified the segment of the spectrogram
that she considered most stable (1.75 seconds) and in step two, a consensus
model was used whereby the raters first agreed on the segment of the spec-
trogram that was the most stable and then agreed on the AST of this stable
segment. This interval of 1.75 seconds is shorter than the 2 seconds advised in
(van As, 2001; van As-Brooks et al., 2006) because several of the recordings had
been segmented (i.e., the original unedited recordings were no longer available)
meaning that the margins of the spectrogram would be invisible for stimuli with
a length of 2 seconds. Inter-rater agreement was 58% before consensus with
a correlation coefficient of R = 0.75 between the AST values (p<0.001). See
Table 5.3 for the distribution of the speakers over AST classes.

5.2.3 Acoustic measurements

The consensus intervals were used to measure the acoustic features. Table
5.2 lists the acoustic features which were selected for this study, based on the
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Feature Description

VF Fraction of frames that are voiced
MVD Maximum voicing duration
F0 Standard deviation of F0

Shimmer
Jitter
HNR Harmonics-to-noise ratio (dB)
HNRlow HNR low pass filtered speech (<700Hz)
HNRhigh HNR band pass (700Hz - 2300Hz)
GNE Glottal noise energy
CPP Cepstral peak prominence
BED Band energy difference
QF1-QF3 F1-F3 quality factor (Fi/Bi)

Table 5.2: Overview of acoustic parameters used. With the exception of BED and
QF1-QF3, all measures depend on the detection of voicing and pitch.

studies presented in Table 5.1. These features were automatically measured
with Praat with a pitch floor of 40 Hz and a window size to 25 ms (see Acous-
ticMeasureScripts.praat; van Son, 2013). Where possible, we used published
settings for measurements (van As, 2001; van Gogh et al., 2005). MVD was
determined on the whole /a/ realization. For practical reasons, the HNRlow,
HNRhigh, and cepstral rahmonic intensity as used by van Gogh et al. (2005)
were substituted with the HNR of low-passed and band-passed speech, and the
cepstral peak prominence (CPP), respectively. Formant quality factors (QF1-
QF3) were added as non-voice measures. D2 and Sample Entropy as proposed
in Yan et al. (2013) could not yet be implemented in Praat.

5.2.4 Acoustic features and machine learning

Automatically evaluating AST based on acoustic information has aspects of
both classification (identity) and regression (size): each signal type is distinct
and derived from features in the spectrogram (classification), yet the signal
types are also ordinal whereby prediction between classes can be seen as an
intermediate value (regression). Model performance can be evaluated based
on classification error when using a classification algorithm, on the root mean
square (RMSE) when using a regression algorithm, or on the explained variance
(e.g., correlation coefficient) between observed and predicted signal types.

Although it is not possible to find the best classification function in an ef-
ficient way, it is still possible to find an efficient classification function from
examples. Using a variety of machine learning techniques and feature selection,
it is also possible to estimate the robustness of the solution under different sets
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of examples (Guyon and Elisseeff, 2003; Ladha and Deepa, 2011; Maindon-
ald and Braun, 2006). These technologies can also be used to determine the
importance or redundancy of individual and combinations of acoustic features
for classification. Acoustic features were selected and ordered on explanatory
importance using machine learning (ML) techniques as described in Guyon and
Elisseeff (2003); Ladha and Deepa (2011). All ML experiments were done us-
ing implementations in R (R Core Team, 1998–2012) (see model_AST.R ; van
Son, 2013). Seven ML algorithms were tested: Linear model (LM), Linear and
Quadratic discriminant analysis (LDA, QDA), Support Vector Machines (SVM),
Random Forest (RF), CaRT (RPart), and Neural nets (NNet).

Methods were used with their default settings in R (R Core Team, 1998–
2012). The number of possible settings is too large to allow meaningful op-
timization for our data set. The results presented here should be interpreted
as lower bounds on performance. All ML methods were tested in classification
and regression mode. Where necessary, regression results were converted to
classification, class 1-4, by rounding (LM, NNet). Classification probabilities
were converted to regression values by calculating the expected value (LDA,
QDA).

A wrapper methodology with forward selection and backward elimination
was used for feature selection (Guyon and Elisseeff, 2003; Ladha and Deepa,
2011). This means that each ML method was used as a black box that outputs
a figure of merit given a training and feature set. Stratified bootstrap sampling
validation, with 40-fold resampling, was used to check robustness of feature
selection. Leave-one-out cross-validation (LOOCV), where each sample is pre-
dicted using all but this sample as training set, was used to estimate the real
predictive power of the models. Three recordings had no measurable voicing,
and thus, no pitch related features. These were assigned predicted type 4.

5.3 Results and discussion

5.3.1 Single feature analysis

A summary of the relationship between acoustic features and observed AST
is listed in Table 5.3. Nine of the acoustic features show a main effect for
classification type and many of these can differentiate between signal type pairs
(see post-hoc results in Table 5.3). A simple linear regression model using VF
alone can explain almost 60% of the variance in classification. There are strong
correlations between the acoustic features (not shown), the strongest between
VF and MVD (R2=0.71), HNR and HNRlow (R2=0.58), and between VF and
HNR (R2=0.64). Purely random classification, using permutations, results in a
correct classification of 0.33 (sd=0.04) and R2=0.01 (sd=0.016).
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ML methods were trained on the link between AST classification and single
acoustical features. The best and median performances are presented in Figure
5.1. For both R2 and correct classification, VF, MVD, HNR and HNRlow out-
perform the other features (in this order). Where median values are higher than
chance performance plus two standard deviations (see Figure 5.1), the classi-
fication is likely robust. Otherwise, the performance is expected to be erratic.
For the leftmost four features (VF, MVD, HNR, HNRlow), the classifications
seem to be robust. For neither classification nor regression do QF3, QF2 or
HNRhigh reach this level of significance.

5.3.2 Feature combinations

Bootstrap validation versus LOOCV and forward selection versus backward
elimination all resulted in comparable feature selection and performance (not
shown). Classification outperformed regression slightly, but was otherwise com-
parable. Only results for classification with LOOCV and forward selection will
be reported unless indicated otherwise.

Classification performance is plotted versus the number of acoustic features
in Figure 5.2 for all ML algorithms used. The ML methods split into two groups:
LDA, QDA, SVM, and RPart all reach high correct classification rates with only
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three acoustic features. The remaining methods, LM, RF, and NNet, perform
worse. The inherently stochastic nature of RF, and NNet might at least partly
explain their erratic results on small data sets. "Good" runs were selected for
these two methods.

Classification performance as a function of the number of features varies
widely between methods. Complex ML methods such as SVM, QDA, and RF
are sensitive to the “curse of dimensionality”: Including more features leads
to marked decreases in performance due to overtraining (Guyon and Elisseeff,
2003; Ladha and Deepa, 2011). However, RPart drops features that do not
increase performance. This might be an explanation for the stable performance
of RPart.

The order of selection of features was investigated with bootstrap valida-
tion (see section 5.2.4). All methods select either VF or MVD as their first
feature. The second feature is then one of the HNR features (HNR, HNRhigh,
or HNRlow). The third feature selected is more varied, either another from
MVD, VF, or the HNR group, but also QF2 and BED were selected (LM,
LDA). The LOOCV results were equivalent, but varied somewhat in the third
selected feature (Figure 5.2).

From this we conclude that VF and MVD alone supply enough information
to get well over 60% correct classification. Including the HNR group of features
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then allows performance to rise to over 70% correct classification (see Figure
5.2). Members of these groups often appear again as third selected feature,
indicating they are not completely interchangeable (redundant). With three
features, the high-performance methods get over 70% correct. Increasing the
number of features can sometimes improve performance even to 75% correct
classification with five features, e.g., for QDA and SVM. However, differences
become rather small and unreliable for our data set. For all ML methods it was
found that an analysis which excluded VF, where MVD would substitute for it,
resulted in slightly lower performance, still reaching ⇠70% correct classification
and R2 up to 0.6 (note, RPart performed better without VF).

AST classification is also an ordinal scale. Therefore, not all classification
errors should be weighted equal. An AST class 1-4 confusion is worse than a
class 3-4 confusion. The squared correlation coefficient (R2) between predicted
and consensus classification is a figure of merit that measures such discrepan-
cies. For all ML methods, except LM, the R2 peaked between 0.6 and 0.7 at
best classification performance in Figure 5.2. That is, the ML methods were
able to explain more than 60% (close to 70% for SVM) of the variance in the
consensus classification.

Table 5.3 presents several other features beside VF, MVD, and HNR that
show statistically significant differences between AST classes, e.g., Shimmer,
GNE, CPP. However, it seems the ML algorithms applied here are unable to use
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this information to improve classification. The analysis presented in Figure 5.2
was repeated with the exclusion of VF and MVD. With this exclusion, classifica-
tion was regularly over 0.6 but R2 came only slightly over 0.4 (43% explained
variance). The first feature selected was always either HNR or HNRlow.

When excluding all of VF, MVD, and the HNR group of features, correct
classification peaked at 0.62 (for QDA with BED + Shimmer), but was well
below 0.6 for all other methods (not shown). This might seem high considering
the chance level was 0.33. However, R2 was rarely above 0.2, and generally
lower (20% explained variance). This indicates that classification errors be-
came much more random. Information in these acoustic features might mainly
identify individual classes (c.f., Table 5.3). The first feature selected under
these conditions was four times CPP, and BED, Shimmer, and QF3 each once.

5.3.3 Individual class type identification

Best performance of AST classification might not be attained using a single
model for all types. The above analysis was repeated, but now as four two-
type classification tasks. All ML methods (see section 5.2.4) were trained and
tested on a single type with all other types merged into a single class, e.g., type
2 against types 1, 3, and 4 combined. Chance classification performance was
recalculated for each combination. The results are presented in Figure 5.3.

As expected, the end-point types 1 and 4 were easier to identify than the
inner types 2 and 3. Behavior of the classifiers was more erratic than with the
original four type task. SVM could not even classify type 3 versus the others.
Number and selection of features varied much more than the patterns seen in
Figure 5.2. This is likely caused by the unbalance between positive and negative
samples in this task.

5.4 Conclusions

Many acoustic measurements correlate, often strongly, with the AST classifi-
cation (see Tables 5.1, 5.3). However, our study shows that only two groups
of features can perform a classification to any reasonable extent: voice de-
tection (VF and MVD) and the harmonics-to-noise ratio (HNR, HNRlow, and
HNRhigh). Other factors improve classification performance only marginally.
This indicates that the presence and duration of voicing and the harmonic-to-
noise ratio are the most salient acoustic features that can be used to classify a
TE signal into its acoustic signal type. In our study, QDA and SVM performed
best, but RPART would perform almost as good and can easily be assessed au-
tomatically. A practical tool incorporating these methods will be made available
online at van Son (2012).
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The fact that classical measures of glottal voices, like jitter and shimmer, are
less salient in TE speech can possibly be attributed to the inherent instability
of neo-glottis vibrations (Yan et al., 2013).
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Table 5.3: Effect of signal type (AST) on each acoustic variable (Kruskal-Wallis
test), explained variance (R2) using a linear model, median variable value, and
post-hoc comparisons (Mann-Whitney tests, if Effect significant).
P-values ?: p<.0083, shaded: p<.0035 (correction for multiple comparisons). Exclamation mark
highlights comparisons where exact significance cannot be computed due to ties within a category.
AST class frequencies (c:N) - 1:14, 2:43, 3:13, 4:17. See Table 5.2 for abbreviations.
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The relationship between acoustic signal

typing and perceptual evaluation of
tracheoesophageal voice quality for

sustained vowels0

Abstract

Objectives To investigate the relationship between acoustic signal typing and
perceptual evaluation of sustained vowels produced by tracheoesophageal (TE)
speakers and the use of signal typing in the clinical setting.
Method Two evaluators independently categorized 1.75-second segments of
narrow-band spectrograms according to acoustic signal typing and indepen-
dently evaluated the recording of the same segments on a visual analogue scale
according to overall perceptual-acoustic voice quality. The relationship between
acoustic signal typing and overall voice quality (as a continuous scale and as a
4-point ordinal scale) was investigated and the proportion of inter-rater agree-
ment as well as the reliability between the two measures.
Results The agreement between signal type (I-IV) and ordinal voice quality (4-
point scale) was low but significant and there was a significant linear relationship
between the variables. Signal type correctly predicted less than half of the voice
quality data. There was a significant main effect of signal type on continuous

0
R.P. Clapham, C.J. Van As-Brooks, R.J.J.H. van Son, F.J.M. Hilgers, M.W.M. van den

Brekel, Journal of Voice, 29, 2015, e29.
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voice quality scores with significant differences in median quality scores between
signal types I-IV, I-III and I-II.
Conclusions Signal typing can be used as an adjunct to perceptual and acoustic
evaluation of the same stimuli for TE speech as part of a multi-dimensional
evaluation protocol. Signal typing in its current form provides limited predictive
information on voice quality and there is significant overlap between signal type
II and III and perceptual categories. Future work should consider whether the
current four signal types could be refined.

6.1 Introduction

Functional voice assessment requires a multi-dimensional approach to evalua-
tion and data should allow a clinician to determine whether a voice is classified
normal or pathological, the severity and cause of a pathology and allow track-
ing changes in voice over time (Dejonckere, 2010). It is recommended that
an evaluation protocol contain perceptual evaluation combined with acoustic,
imaging, aerodynamic and patient self-report measures (Dejonckere, 2010). A
specialized protocol for voice assessment is required within the area of tracheoe-
sophageal (TE) speech because the overall voice quality of substitute voicing
should be compared to “near normal laryngeal voicing” rather than normal la-
ryngeal voicing and performing acoustic evaluation can lead to unreliable and
inaccurate measurements because standard pitch-detection algorithms in gen-
eral acoustic software fail when the speech signal has low or no fundamental
frequency or high levels of noise.

Titze (1995) introduced acoustic signal typing for laryngeal speakers as a
decision making tool on whether the researcher/clinician could collect reliable
acoustic data. Signal typing involves categorising recorded speech samples
based on visual characteristics observed on narrow-band spectrograms. van As-
Brooks et al. (2006) adapted Titze’s signal-typing technique for TE voice and
identified four signal types based on the spectral characteristics of this speaker
group. Although the use of signal typing is recommended as a decision making
tool (Titze, 1995; van As-Brooks et al., 2006), there is a relationship between
signal type of sustained vowels and auditory-perceptual judgements of voice
quality for running speech (D’Alatri et al., 2011; van As-Brooks et al., 2006) and
as such, signal typing has been proposed as an indicator of the overall perception
of voice quality or of functional voice outcome (D’Alatri et al., 2011; Sprecher
et al., 2010; van As-Brooks et al., 2006). The use of signal typing as part
of a multi-dimensional evaluation of TE voice can be useful as it is estimated
that 77 percent of TE speakers have a measurable fundamental frequency (van
As-Brooks et al., 2006) and many acoustic measures will fail this population
because of the lack of periodicity in the speech signal.
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As noted by Van Gogh et al. (2005), there is a subjective component when
performing signal typing and reliability and agreement measures warrant report-
ing just as auditory-perceptual reliability and agreement measures are generally
reported. Many studies investigating signal type for TE speech, however, have
used classifications from a single evaluator or do not include procedural informa-
tion on who performed classifications and do not include reliability information
(D’Alatri et al., 2011; Lawson et al., 2001; Sprecher et al., 2010; van As-Brooks
et al., 2006; Van Gogh et al., 2005). The present study is unique in that we (a)
consider the relationship of signal type and perceptual evaluation of the same
stimuli and (b) use a scoring procedure that reflects the clinical setting. That
is, rather than use mean scores of a large group of raters, we use consensus
scores made by two speech pathologists.

This paper explores the use of signal typing in its current form for TE voice
and the relationship of signal type to perceptual scores of voice quality of the
same stimuli. Our principal research line investigates the association between
signal type and voice quality for the same stimuli and whether there is a pre-
dictive relationship between the two variables. Our secondary research line was
to compare the inter-rater agreement and reliability of signal type evaluations
with voice quality evaluations. The key variables are consensus acoustic signal
type (ordinal data containing four categories) and consensus voice quality scores
(continuous data 0-1000). We also utilize each rater’s individual evaluations
(i.e. pre-consensus evaluations) to report inter-rater agreement and reliability.

6.2 Method

6.2.1 Audio stimuli

Audio recordings were collected at the Netherlands Cancer Institute (Amster-
dam, the Netherlands) as part of various research studies between 1996 and
2009. All speakers produced a sustained /a/ as part of the recording proce-
dure. All speakers provided informed consent at the time of data collection and
granted use of the recordings for research purposes. As the recording conditions,
settings and equipment varied across the past studies, for the current study we
digitalized analogue recordings and all recordings were converted to 44.1 kHz
sampling rate with 16-bit Signed Integer PCM encoding. No compression had
been used on the recordings. Where possible, we used original recordings, but
in several cases, only 2-second segments of the vowels were available.

The collection contains recordings from 87 TE speakers. The majority of
speakers were male (74 [85%]) and median age at time of laryngectomy was
57 years (range 38-85 years; age at time of laryngectomy was not recorded for
one speaker). Age at the time of the recordings could be retraced for 37 (43%)
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of the speakers (median age 66 years, range 46-81 years). As many speakers
provided recordings for multiple studies, we selected the stimuli with the earliest
recording date. For the recordings used in the present study, 83 (95%) speakers
used a Provox1 or Provox2 prosthesis and the remaining 4 (5%) speakers used
a Provox Vega prosthesis.

6.2.2 Acoustic signal typing

Procedure The four signal types are Type 1 (Stable and harmonic), Type
II (Stable and at least one harmonic, Type III (Unstable or partly harmonic)
and Type IV (Barely harmonic). During the evaluation of 12 practice items,
two speech pathologists (authors RPC and CVAB) discussed and adapted scale
definitions. The signal typing criteria presented in van As-Brooks et al. (2006)
was adjusted to account for the minimum length of the pre-segmented stimuli
and perceived ambiguity in the definition of ‘stable’ (see Table 6.1). For this
present study, ‘stable’ was defined as a continuous signal at the fundamental
frequency harmonic. Note that the original signal typing criteria of 2 seconds
was adjusted to 1.75 seconds, as pre-edited 2-second recordings would have had
missing margins in the spectrograms. Note also that the 2-second rule used in
van As-Brooks et al. was based on the minimum length of the stimuli.

Acoustic signal type Criteria

I Stable • Stable signal for �1.75 seconds, &
and harmonic • Clear harmonics from 0 to 1000 Hz

II
Stable and at • Stable signal for � 1.75 seconds, &
least one • At least one stable harmonic at the
harmonic fundamental frequency for � 1.75 seconds

III
Unstable or • No stable signal for > 1.75 seconds, or
partly • Harmonics in only part of the sample
harmonic (for longer than 1 second)

IV Barely harmonic • No detectable harmonics or only short-term
detectable harmonics for < 1 second

Table 6.1: Criteria for each of the four acoustic signal types

Spectrograms were presented via a custom-made program termed the NKI
TE-Voice Analysis tool (TEVA; van Son, 2012), which runs as a Praat extension
(Boersma and Weenink, 2009). The entire recording was visualized in a narrow-
band spectrogram (window length .1 s, time step .001 s, frequency step 10 Hz,
maximum frequency 2 kHz) and raters were unable to play the sound file. Using
the TEVA tool, each rater visually identified the most stable segment of the
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spectrogram and then classified this segment according to signal type. The
raters were blind to speaker gender, speaker age and prosthesis type. After
individual classification, the raters came together and agreed upon the 1.75-
second segment to be evaluated and the signal type of this segment.

Rater reliability and agreement Table 6.2 lists the inter-rater agreement
and disagreement grouped according to consensus signal type. Raters agreed
on signal type categorization in 50 cases (57%; permutation average 29 %
and sd 4 %) and were in close agreement for the remaining 31 cases (36 %;
permutation average 38%, sd 5%). The kappa for inter-rater agreement was
statistically significant (weighted kappa:  = .55, p < .001, weights set at 0,
.33, .66, 1.0). There was a statistically significant correlation between the two
rater’s evaluations (tau = .63, p < .00) and there was acceptable reliability
between the raters (single-measure ICC (consistency) using a two-way model:
ICC = .73, 95% CI .62-.82).

(Dis)Agreement
Variable n Exact (%) Close (%) Disagree (%)

AST
I 14 6 (43) 6 (43) 2 (14)
II 44 25 (57) 18 (41) 1 (2)
III 12 4 (33) 5 (42) 3 (25)
IV 17 15 (88) 2 (12) 0 (0)

87 50 (57) 31 (36) 6 (7)

Voice Quality
Good 15 9 (60) 4 (27) 2 (13)
Fair 30 13 (43) 8 (27) 9 (30)
Moderate 23 7 (30) 7 (30) 9 (39)
Poor 19 7 (37) 6 (32) 6 (32)

87 36 (41) 25 (29) 26 (30)

Table 6.2: Inter-rater agreement and disagreement for (i) acoustic signal type (AST)
grouped according to consensus signal type and (ii) voice quality scores grouped
according to consensus voice quality scores (converted into ordinal categories). Note:

AST agreement divided into exact agreement (same category selected by raters), close

agreement (categories differ by one type) and disagreement (categories differ by two types).

Voice quality agreement divided into exact agreement (two scores ±125), close agreement

(two scores ±250) and disagreement (two scores differ by > 250).
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6.2.3 Auditory perceptual evaluation

Procedure Three months after performing signal typing evaluation, the same
raters completed the auditory-perceptual evaluation task. The perceptual vari-
ables were based on scales used for the auditory-perceptual evaluation of running
speech (van As-Brooks et al., 2006) and those developed for the INFVo (Mo-
erman et al., 2006). The raters discussed and adjusted scale definitions during
the evaluation of 12 practice items. Although several additional parameters
were included in the data collection, we restrict our analysis to the parameter
‘overall voice quality’.

The raters were blind to all speaker information, including signal type data.
Stimuli were presented in a random order via an online self-paced experiment
and raters listened to recordings via a headset. Stimuli were not re-presented.
Raters recorded their evaluations on a computerised visual analogue scale built
within the TEVA tool. The response scale contained textual anchors at both
extreme and did not display tick marks. Raters moved the cursor along the line
to the desired location between the two anchors and the cursor location was
then saved as a value between 0 (“least similar to normal”) and 1000 (“most
similar to normal”).

Scores that differed between the raters by more than 125 points were dis-
cussed and re-scored in the consensus round. When scores were within the
range of agreement, the mean score was considered the consensus score and
these cases were not discussed. The value ±125 is derived from dividing the
scale into four intervals, which corresponds with a four-point ordinal equal ap-
pearing interval scale. To aid scoring in the consensus round, major and minor
tick marks were placed at every 10% and 5% scale distances, respectively. Nu-
meric anchors were displayed at major tick marks.

Rater reliability and agreement Table 6.2 lists the inter-rater agreement and
disagreement grouped according to consensus voice quality scores (converted
into four ordinal categories). The two rater’s scores were in exact agreement
(difference equal to or less than 125 points) in 36 cases (41%) and were in
close agreement (difference equal to or less than 250 points) in the remaining 25
cases (29 %). The strength of the correlation between the two raters’ individual
judgements was statistically significant (tau = .43, p < .001) and the reliability
between the raters was acceptable (single-measure ICC (consistency) using a
two-way model: ICC = .63, 95% CI .49-.74).

6.2.4 Statistical analysis

All statistical analyses were completed with the statistics program R (R Core
Team, 1998–2012) and p-value was set to p < 0.05 for testing main effects.
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A Bonferroni correction was applied for post-hoc comparisons. Although the
evaluation task (i.e. voice quality vs. signal type) and stimuli (i.e. auditory-
perceptual vs. visual) differed between the two measurements, where possible
we used statistical tests for dependent samples as the stimuli were derived from
the same recordings and the raters were the same for each task.

Relationship between the two variables The Chi-square linear-by-linear test
of association for ordinal data was used to test the association between con-
sensus signal type categories and consensus voice quality categories. To do
this, the visual analogue scale was divided into four equal parts and the consen-
sus scores were coded into one of four ordinal categories: ‘good’ (> 750.75),
‘fair’ (> 500.5 &  750.75), ‘moderate’ (> 250.25 &  500.5) and ‘poor’ (
250.25). To further understand the relationship between the two variables, a
non-parametric Anova (Kruskal-Wallis test) with Mann-Whitney test for post-
hoc comparisons was used and we evaluated whether voice quality was a sig-
nificant predictor of signal type using linear regression.

Comparing proportions of agreement To compare proportions of inter-rater
agreement between the two measures, we used McNemar’s non-parametric test
for paired samples. That is, we completed two analyses: (1) signal type exact
agreement with voice quality exact agreement and (2) signal type agreement
(close + exact) with voice quality agreement (close + exact). We used a
permutation method (data resampling without replacement, N=100,000) to
calculate the level of chance agreement within the data.

6.3 Results

6.3.1 Relationship between signal type and voice quality

Ordinal scores of voice quality Consensus voice quality scores were con-
verted into 4-point ordinal scale by dividing the visual analogue scale into four
equal parts and labelled “good”, “fair”, “moderate” and “poor”. The largest cat-
egory was for ‘fair’ (30 cases) and the category with the least number of cases
was for ‘good’ (15 cases) (see Table 6.2). The relationship between consensus
signal type and consensus ordinal voice quality scores is presented in Figure 6.1.
Results of the kappa statistic indicate low, but statistically significant agreement
between the two measures ( = 0.22, p = .004).

A test of the linear-by-linear association for ordinal variables indicates the
association between the two variables was significant (X2 (1, N = 87) = 29.71,
p < .001). If we consider signal type (I-IV) as a predictor of voice quality
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category (good to poor), signal type correctly predicts 38 cases (44%) when
the perceptual scale is divided into four equal categories.

Continuous scores of voice quality To further investigate the relationship
between the consensus scores, we performed a non-parametric test of the ef-
fect of signal type (ordinal data) on the perceptual scores (continuous data).
Kruskal-Wallis test shows there is a significant main effect of signal type on
perceptual scores of voice quality (X2 = 31.4, p < .05). Mann-Whitney tests
(p set to < .0083 for multiple comparisons) indicate significant differences in
median voice quality scores for signal type categories I-IV, I-III and II-IV. If signal

Figure 6.1: Voice quality scores by acoustic signal type. Voice quality data points
overlay the boxplot and are coded according to boundaries for converting the
continuous scores into categorical data (“good” n=15 (17%): AST I n=5, II n=10;
“Fair” n=30 (34%): AST I n=7, II n=17, III n=4, IV n=2; “Moderate” n=23
(28%): AST I n=2, II n=12, III n=5, IV n=4; “Poor” n=19 (22%): AST II n=4, III
n=4, IV n=11).
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type is considered pseudo-continuous data, a linear regression analysis indicated
that voice quality score significantly predicts acoustic signal types (p < .001)
and explains a statistically significant proportion of the variation (multiple R2

= .37, F(1,85) = 49.8, p < .001).

6.3.2 Comparing proportions of rater agreement

McNemar’s test revealed no statistically significant difference in proportion of
exact inter-rater agreement for perceptual voice quality scores (41%) and acous-
tic signal type (58%) (McNemar’s X2 (1, N = 87) = 3.84, p = .050). The
difference in proportion of exact/close inter-rater agreement between voice qual-
ity measures (70%) and signal type (94%) was significant (McNemar’s X2 (1,
N = 87) = 12.89, p < .001).

6.4 Discussion

Our primary research line was to investigate the association between consensus
judgments of signal type and consensus judgments of voice quality for segments
of sustained vowel /a/. In terms of data distribution, over half the stimuli (51
%) was classified signal type II and the least frequent classification was for
signal type III (14 %). This distribution pattern is unlike that reported in van
As-Brooks et al. (2006) (signal type IV was the most frequent and type I was the
least frequent) and overlaps somewhat with the distribution pattern reported
D’Alatri et al. (2011) (signal type I was the most frequent and type III was the
least frequently occurring category).

To allow comparison between signal type (ordinal data) and voice quality
(continuous data), the visual analogue scale was divided into four equal parts.
Over 60 percent of stimuli fell in the central “fair” and “moderate” range with
the most frequent category being “fair” (34 %) and least frequent category
being “good” (17 %). Direct comparison of the category frequencies with van
As-Brooks et al. (2006) and D’Alatri et al. (2011) is not possible as both these
studies used a 3-point ordinal rating scale. We elected to convert the visual
analogue scale into four parts as opposed to three in an attempt to maintain the
sensitivity of the scale. Converting scores made on a continuous scale into an
interval scale is a technique used in researcher (e.g., Eadie and Kapsner-Smith,
2011; Kreiman and Gerratt, 1998; Peterson et al., 2013; Wuyts et al., 1999).

Figure 6.1 displays the relationship between signal type and ordinal voice
quality scores. Stimuli with signal types III (unstable / some harmonics) and IV
(no harmonics / mostly without harmonics) were never rated as having ‘good’
voice quality. Likewise, stimuli with signal type I (stable with clear harmonics)
were never rated as having ‘poor’ voice quality. This pattern is similar to that
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reported by van As-Brooks et al. (2006) where the two extreme signal types
never co-occurred with the opposite perceptual extreme when a 3-point ordinal
scale was used. In line with Van As’ study comparing signal type of vowels and
voice quality of running speech, we also found a statistically significant linear
association between signal type and voice quality (ordinal scores) for the same
stimuli. The strength of the agreement between the two variables, however,
was low. It is clear from Figure 6.1 that signal type II co-occurs with a broad
range of the quality scale (predominately ‘fair’ to ‘poor’). Excluding stimuli
with signal type II from the kappa analysis results in increased agreement (from
 = 0.22 to 0.31).

Less than half of the ordinal voice quality scores can be correctly predicted
by signal type. This highlights that our division of the perceptual scale into
four equally spaced intervals may be too simplistic and an alternative division
with unequal intervals may more accurately reflect severity (e.g., Lopes et al.,
2012; Yu et al., 2001) and increase the strength of the agreement between the
two scales. However, we also completed exploratory analyses of signal type on
continuous voice quality data and found a statistically significant main effect.
The post-hoc analysis revealed that voice quality median scores differed for
three of the signal type comparisons: only quality scores for signal type I could
be differentiated from the other signal types. As far as we are aware, only
the study by D’Alatri et al. (2011) has found significant differences between
adjoining signal types and that was only for types III and IV. We hypothesize
that the broad definition of signal type II and the “and/or” criteria for signal
type III results in high levels of variability in the data. This is in line with the
result from our previous study in which signal types II and III were the most
difficult to predict using acoustic measures (Clapham et al., 2013).

Our secondary research line was to compare the proportion of inter-rater
agreement and the reliability of signal type evaluations with voice quality evalu-
ations. Our primary argument for using the proportion of exact and proportion
of close agreement as indices of agreement is that these measures can be applied
to both continuous and ordinal data and allow us to directly compare propor-
tions between the two scales. The drawback of this measurement method is
that it does not take chance agreement between the two raters into considera-
tion. We decided against converting individual voice quality scores into ordinal
scores as this would not account for the situation where scores differ by a few
points but fall either side of a cut-off point.

Before discussing the comparison results, we discuss the inter-rater agree-
ment data for first signal type then voice quality. For signal type, the inter-rater
disagreements were between signal types I-III (n=4) and II-IV (n=2). In no case
was the disagreement larger than two categories (only possible for signal types
I or IV). In no cases did the two raters disagree on signal type IV stimuli (see
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Table 6.2 for details). In terms of patterns of agreement, agreement was largest
for signal types II and IV. This is most likely a reflection of the number of signal
type II stimuli and that signal type IV is an easily identified category. However,
due to the procedure used for data collection, we are unable to state whether
the disagreement occurred because of differences in categorisation (i.e. iden-
tification of signal type) or because of differences in segment selection. In a
future experiment these two aspects might be separated by asking the raters to
agree which 1.75 segment should be evaluated for signal type and only then do
the individual ratings of signal type.

For voice quality, 61 (70%) of the rating pairs were in exact or close agree-
ment. Scores in the centre of the scale had higher counts of disagreement
than scores at the extremes of the scale (see Table 6.2). The strength of the
association between the two raters’ evaluations was statistically significant. Al-
though the inter-rater agreement results indicated statistically significant levels
of agreement and that the evaluations were made above chance level agree-
ment, the results highlight that similar to perceptual evaluation, signal typing
remains a subjective task and hence why consensus evaluations should be used
in the clinical and research setting (for all subjective tasks) where possible.

Concerning differences in the proportion of inter-rater agreement between
the two measures, although the proportions of agreement were higher for judge-
ments of signal type than voice quality (exact agreement: 58% and 41% and
close agreement: 94% and 70%, respectively), this difference was statistically
significant for measures of close agreement. For measures of exact agreement,
the results were just beyond the set level of statistical significance. That the
proportions of agreement are larger for signal typing data is not an unexpected
result; the signal typing task requires each rater to select one of four described
categories (i.e. 25% agreement due to chance) whereas in the voice quality
task, the scale does not force the rater to select a category and textual anchors
are only provided at the scale extremes. Although the proportion of close agree-
ment on signal type was significantly higher than for voice quality, because of
differences in the scales the distances are not equal between the two variables
and as such are difficult to compare directly. That is, close signal type agree-
ment means that the scores differ by a maximum of 1

2 the ‘scale’ whereas close
voice quality agreement means that the scores differ by a maximum of 1

4 of the
scale.

Regarding the inter-rater reliability for the two measures, the reliability for
both variables was significant but stronger correlations were found for signal
type measures than voice quality measures. This is not surprising as the signal
type variable requires the rater to make a forced choice from four options
with each option having some criteria whereas the voice quality scale is on
a visual analogue scale without textual anchors over the continuum of the
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scale. Compared to other studies of perceptual voice quality employing ordinal
scoring systems, the signal type results are similar to the average correlation
value reported in Shrivastav et al. (2005) for evaluations of breathiness on a
5-point scale (average Tau .64) and are lower than the coefficient reported in
Karnell et al. (2007) for the Grade scale on a 4-point scale (Spearman = .85).
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Figure 6.2: Concept version of the voicegram. The print displays (from top down)
speaker code, date of print, observed signal type and voice quality score, computed
signal type and voice quality score, waveform (box 1) and central 10 ms from
waveform (box 2), spectrogram of predetermined segment used for signal typing and
perceptual evaluation (box 3), pitch contour (box 4), and long-term average
spectrum (Ltas) (box 5).
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The ICC values for the two variables are stronger for signal type variable
than the voice quality variable (.73 and .63, respectively). Compared to other
studies, the reliability results are lower than that reported in Nemr et al. (2012)
for a 3-point scale to evaluate Grade from the GRBAS for healthy control
and speakers with dysphonia (ICC = .88) and that reported in Zraick et al.
(2011) for the Grade part of the GRBAS (ICC = .66). Although agreement
and reliability data are low, the procedure used to collect data (i.e. consensus
scores) is a technique that can be used in the clinical situation.

The results suggest that signal typing in its current form can be used as
part of a multi-dimensional assessment of voice quality predominately as a way
to categorize voice quality and serve as a decision making tool on acoustic
analysis. We anticipate that future work will consider updating the signal type
definitions by including signal sub-types for types II and III (e.g. differentiation
between types that contain continuous, flat harmonics and types that contain
continuous, fluctuating harmonics). Part of this difficulty may be due to the
variability in TE speech, that is, type III instability can be cause by hypertonicity
or hypotonicity which both sound very different to a listener. However, in terms
of signal typing serving as a basis for further acoustic analysis, type III would
indicate that there is not stable fundamental frequency and this should be
considered when acoustic analyses are carried out.

This current study is part of our efforts to automate subjective evaluation
of speech and voice quality so they can complement a clinician’s evaluation.
To this end, we have already begun work on automating signal type based on
acoustic information (Clapham et al., 2013). We envisage that signal typing
could be a useful component in the multidimensional evaluation of voice quality
and when paired with automatic acoustic data, predicted perceptual scores and
observed perceptual scores, a clinician can have a “voicegram” of the speaker
that can be printed and kept in a patient’s file for comparison with other patients
and assessment of treatment results. We are currently developing a function
within the TEVA application to produce a “voicegram” of a speaker which
contains several automated acoustic measures and can display the predicted
acoustic signal type (see Figure 6.2 for a concept voicegram).

6.5 Conclusions

The results support the use of signal typing as part of a multi-dimensional
evaluation of functional voice assessment. There is a statistically significant
relationship between the two measures but signal typing in its current form
provides limited predictive information on voice quality. The two extreme signal
type categories are clear but there is a large overlap between signal types II and
III and perceptual categories. However, signal typing can serve as a basis for
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determining further acoustic analysis (e.g. type III would indicate that there
is not stable fundamental frequency and fundamental frequency-based acoustic
measures should be avoided. Our results have confirmed that while signal
typing is a useful approach to evaluating voice quality, the definitions of the four
existing signal types and inclusion of subtypes warrants further investigation.
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7
Computing scores of voice quality and

speech intelligibility in
tracheoesophageal speech for speech

stimuli of varying lengths 0

Abstract

In this paper, automatic assessment models are developed for two perceptual
variables: speech intelligibility and voice quality. The models are developed
and tested on a corpus of Dutch tracheoesophageal (TE) speakers. In this
corpus, each speaker read a text passage of approximately 300 syllables and
two speech therapists provided consensus scores for the two perceptual variables.
Model accuracy and stability are investigated as a function of the amount of
speech that is made available for speaker assessment (clinical setting). Five
sets of automatically generated acoustic-phonetic speaker features are employed
as model inputs. In Part I, models taking complete feature sets as inputs
are compared to models taking only the features which are expected to have
sufficient support in the speech available for assessment. In Part II, the impact
of phonetic content and stimulus length on the computer-generated scores is
investigated. Our general finding is that a text encompassing circa 100 syllables
is long enough to achieve close to asymptotic accuracy.

0
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7.1 Introduction

The ability to generate automatically computed scores for perceptual variables
such as speech intelligibility and voice quality is a relatively recent develop-
ment in the area of automatic speech and voice evaluation. An advantage of
computer-generated scores is that they are not susceptible to extraneous factors,
such as listener familiarity with the speaker and differences in internal anchors.
In the clinical setting, computer-generated scores can be a valuable adjunct to
subjective methods of assessment, especially if the evaluation is part of a ther-
apy outcome measurement. In fact, prior knowledge of whether a recording is
pre-therapy or post-therapy does not influence computed scores as it does with
listeners (Ghio et al., 2013) and there is no inter-rater variation for computed
scores as there is when perceptual scores are provided by different clinicians.

Computer-generated scores of perceptual variables have predominately been
limited to research studies with a focus on developing assessment models, but
the methodology is slowly making its way to evaluation studies as a dependent
variable (Mayr et al., 2010; Stelzle et al., 2011; Windrich et al., 2008). In most
cases, researchers have used speech recordings from existing databases that
encompass readings of phonetically balanced texts (e.g. German Der Nordwind
und die Sonne used in Mayr et al. 2010 and Windrich et al. 2008). In perceptual
evaluation of speech intelligibility, some assessments have been developed so
that the phonetic material reflects the phoneme frequencies one would expect
to measure in long texts from the target language (see review article by Miller,
2013). To our knowledge, the effects of speech stimulus length and phonetic
composition on the computed scores has not yet been investigated. There
is, however, evidence that improved automatic binary classification (healthy
control speakers vs speakers with dysarthria) benefits from more speech material
(Bocklet et al., 2013).

The stimulus length varies between research institutes and hospitals as a
result of differences in protocol, speaker characteristics (e.g. patient is unable
to read the entire text due to reading skills, fatigue or underlying pathology)
or both protocol and speaker characteristics. The speech material used across
studies within the same institute can also vary and developing distinct assess-
ment models for the various speech materials available is not possible. This
motivated us to investigate the impact of phonetic variety and stimulus length
on the outputs of automatic assessment models.

The present paper extends our previous work on assessment models for
speech and voice quality for speakers treated for head and neck cancer (Clapham
et al., 2014; Middag et al., 2014). Where the focus of our previous work was on
developing models that perform at a level comparable to that of a human listener
when given a sufficiently large amount of speech, the focus of the present work
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is on developing models that also offer reliable and stable results in a clinical
setting where considerably less speech material per subject is available. The
main goals are thus (1) to establish strategies for creating more robust models
and (2) to offer insight into the minimum amount of speech material needed to
attain accurate and stable computer-generated scores with these robust models.

In Section 7.2.1 we present the audio stimuli and perceptual evaluation data
and describe how the various assessment models were created. We also discuss
the methodology used to investigate phonemic variation and model robustness
(Part I) and the influence of stimulus length and phonetic composition (Part
II). Results from the two experiments are separately listed in the Results section
and are discussed as a whole in Section 7.4.

7.2 Method

7.2.1 Audio stimuli

All audio recordings were collected at the Netherlands Cancer Institute (Ams-
terdam, the Netherlands) as part of previous research studies. As the recordings
were gathered over a period of more than 10 years, the recording conditions are
partly unknown and most likely differed across studies. Digital audio recordings
were re-converted into digital form and all recordings were then standardized
(sampling frequency of 44.1 kHz, 16-bit linear PCM).

There were recordings of 81 Dutch TE speakers (70 males, 11 females)
and all speakers provided informed consent at the time of recording, allowing
the recordings to be used for research purposes. Although multiple recordings
existed for many speakers, only one recording per speaker (the earliest one) is
included in the present study.

All speakers used indwelling voice prostheses (Provox) and read a Dutch
text (80 dappere fietsers) of neutral content, meaning that the text did not
evoke any emotions. The text was divided into six sentences and the average
sentence length is 25 words (SD = 12, range 13-47) or 47 syllables (SD =
23, range 28-88). The text is not phonetically balanced because the recordings
stem from research studies which did not require such a balance.

Since we want to study the effects of stimulus length (in syllables), we
decided to divide the text into text fragments of almost equal lengths. In a
first step we subdivided the longest sentences into two parts by cutting them at
a position where a prosodic boundary can be expected. This way we got nine
text parts some of which were still too short. In a second step, we therefore
merged two short parts into one text fragment. The end result was a set of
six text fragments of approximately 50 syllables each (mean 47, range 35-54).
The upper part of Table 7.1 illustrates how these text fragments relate to the
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original sentences. Of the 40 Dutch phonemes, 27 appear in all six fragments.

7.2.2 Perceptual evaluation

Stimuli

For the auditory-perceptual experiment, we manually extracted the second sen-
tence from the read passage (16 words and 31 syllables) of all speakers as
experimental items. We extracted the fifth sentence of 12 randomly chosen
speakers as practice items, intended to acquaint the listener with the experi-
mental procedure.

Experimental set-up

Each experimental item was scored by two speech language pathologists, both
with extensive clinical experience in the area of TE speech. They individually
evaluated the overall voice quality (with descriptors ‘least similar to normal’
and ‘most similar to normal’) and speech intelligibility (descriptors ‘poor’ and
‘good’) on a computerised version of a visual analogue scale in an online self-
paced listening experiment. No tick marks were observable during the individual
evaluation; the rater moved the cursor along the scale and the final cursor
location was saved as a value from 0-1000. The latter led to a quantization step
that is much smaller than the distinction a listener can make in a statistically
confident way, and thus, small enough to justify an interpretation of the discrete
value as a continuous score. No speaker information (i.e. gender, age, prosthesis
type) was available to the raters.

Scores that differed by more than 125 points between raters were discussed
and re-evaluated in a consensus round. In cases where individual scores were
within 125 points (corresponds to scores being the same if the scale was con-
verted into a 4-point ordinal scale) the mean score was considered as the consen-
sus score. To aid scoring in the consensus round, major (10% of scale distance)
and minor (5% scale distance) tick marks were shown on the scale together
with the two individual scores.

Rater agreement and reliability

Before the consensus round, 32 (38%) of the voice quality scores and 46 (54%)
of the speech intelligibility scores were within 125 points of each other. The
strength of the correlation between the rater’s individual evaluations was sig-
nificant but low for voice quality (Pearson’s correlation coefficient, PCC =
.47, p < .001) and adequate for speech intelligibility (PCC = .62, p < .001).
The intra-class correlation coefficient (for a two-way consistency model) for the
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variables was fair for voice quality (ICC = .42, p < .001) and good for speech
intelligibility (ICC = .62, p < .001) (Cicchetti, 1994).

7.2.3 Automatic evaluation tools

Automatic evaluation involves three stages of processing: (1) an acoustic front-
end analysis describing the energy and shape of the spectrum of Hamming
windowed segments of 25 ms shifted over 10 ms time steps, (2) an analysis
of the acoustic information generating global acoustic-phonetic features that
characterise the speaker (termed ‘speaker features’) and (3) a prediction of
the perceptual variable by means of a regression model. As in our previous
work (Middag et al., 2014), we employ an ensemble linear regression model per
perceptual variable. Such a model computes the mean of 50 scores generated
by 50 small linear regression models. Each small linear model computes the
weighted sum of a couple of selected input features and a bias. The features
to select and the weights to use are learned on a small randomly selected
subset of the training samples. Since an exhaustive search for the best feature
subset is computationally prohibitive, the selection strategy works as follows:
(a) retain the feature triplets offering the highest model accuracies by means of
an exhaustive search, (b) extend each retained feature set by adding the feature
inducing the largest gain in accuracy and (c) repeat this until the accuracy of
the best feature set saturates or starts to degrade. The model accuracies follow
from cross-validation tests on the training subsets.

In the present study, the model inputs are speaker features and these features
are organized into five feature sets. We now briefly introduce these feature sets
and refer to our previous publications for more details.

Phonological and phonemic features

To derive these features, an automatic speech recognizer matches the acoustic
information with the phonetic transcription of the speech via a process of forced
speech-to-text alignment. Two types of speaker features can be extracted:
phonological features (PLFs) and phonemic features (PMFs). We employ 24
binary phonological properties reflecting manner of articulation (e.g. “burst"),
place of articulation (e.g. “bilabial") and voicing (e.g. “voiced"). Each property
is either present or absent in the signal, meaning that there are 48 PLFs available
to characterize a Dutch speaker: 24 positive and 24 negative features. A high
positive PLF indicates that a particular property was present in the intervals
it should have been present. A low negative PLF indicates that a particular
property was not present in the intervals where it was not supposed to be
present.

The PMFs reflect how well phonemes such as /s/, /z/ or /A/ are realized by
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the speaker. From the likelihoods of the different phonemes in a particular frame
one can estimate the posterior probabilities of these phonemes in that frame.
The mean of the posterior probabilities of a particular phoneme in the frames
aligned with that phoneme is a positive PMF corresponding to that phoneme.
A particular PMF thus reflects how well the acoustic properties of a particular
phoneme are found in the intervals where that phoneme was uttered. Dutch
has 40 phonemes, and therefore, there are 40 PMFs available for characterizing
a Dutch speaker.

Alignment-free phonological and alignment-free phonemic features

It is also possible to analyze speech without considering its phonetic tran-
scription. Such an analysis does not involve any speech-to-text alignment
and is, therefore, termed ‘alignment free’. Alignment-free phonological fea-
tures (ALF.PLFs) provide information about the phonological properties of the
speech signal. As explained in Middag et al. (2010), we use a slightly different
phonological feature extractor with 25 instead of 24 phonological outputs in this
stage. These phonological outputs are individually analyzed as a function of
time (for details see Middag et al., 2010). Per property, this analysis yields 12
features such as “mean value”, “mean value of the peaks" and “steepness of the
peak onsets". This way, 300 ALF.PLFs (= 25 * 12) are created to characterize
the speaker.

In a similar vein, one can also compute ALF.PMFs which provide information
about the phonetic properties of the speech signal. Here, a distinction is made
between 55 phones (the 40 traditional phonemes plus 6 closures, 6 bursts, 1
glottis and 2 silence symbols) and per phone, analyzing its posterior probability
as a function of time now generates six statistical measurements, so that in
total 330 ALF.PMFs (6 * 55 = 330) are created to characterize the speaker.

Pitch and voicing related features (AMPEX)

The AMPEX feature extractor generates eight acoustic parameters by means
of a built-in auditory model developed by Van Immerseel and Martens (1996).
It extracts both voicing-related features (e.g. proportion of voiced frames) and
pitch-related features (e.g. jitter). The created features have already been
proven successful for the assessment of pathological speech (Clapham et al.,
2014; Moerman et al., 2004, 2015). The AMPEX feature extractor is freely
available and can be downloaded from the website of the ELIS department at
Ghent University.
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7.2.4 Part I: Phonemic variation and model robustness

We compare performances of voice quality and speech intelligibility models that
have access to an individual feature sets or combinations of feature sets.

Speech material and sampling procedure

The models are trained and validated using a 5-fold cross validation strategy.
A difference with our previous studies (Clapham et al., 2014; Middag et al.,
2014) is that we now set aside 1/5 of the stimuli (16 speakers) as test data to
be used in Part II of our present study. The remaining stimuli (64 speakers) are
divided into five folds: four of which are designated as training data and the
remaining one as validation data.

Model inputs

We investigate the performances of full-set models that have access to one or
more (up to three) complete speaker feature sets as model inputs and reduced-
set models that have only access to preselected features from these feature
sets.

As each phonetic feature corresponds to a particular sound (phone or phoneme)
and each phonological feature to a set of sounds (both the positive and the neg-
ative feature of a sound set is supposed to correspond to the same sound set)
it can be characterized by a frequency of occurrence of this sound (set). If a
certain sound is not uttered in the analyzed text, the acoustic analysis cannot
come up with values for the features corresponding to that sound. In the case
of full-set models, we then replace such features by their mean value observed
in a big sample of normal speech.

In the case of reduced-set models we only consider features whose expected
frequency of occurrence in Dutch (as derived from the phoneme frequencies
found in spoken Dutch as reported in Luyckx et al., 2007) exceeds a threshold
of 5%. This meant that

1. we retained only six PMFs (the average posterior probabilities of /@/,
/A/, /d/, /n/, /r/ and /t/) and the ALF.PMFs derived from these six
PMFs (e.g. “percentage of frames in which /n/ is the phoneme with
the highest posterior probability", “standard deviation of the posterior
probability of /n/"),

2. we kept all PLFs except the ten (5 positive and 5 negative) correspond-
ing to the properties ‘approximant’, ‘lateral’, ‘labio-dental’, ‘glottal’ and
‘high’, and
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3. we expelled the ALF.PLFs that were derived from the phonological prop-
erties ‘nasal vowel’, ‘labio-dental’, ‘glottal’ and ‘palatal’.

None of the AMPEX features were expelled as voicing and pitch features are
always supported by a sufficient amount of speech.

Performance measures

The primary measure of model performance is the root mean squared error
(RMSE). It is defined as the square root of the mean of the squared differences
between the predicted (computed) scores and the consensus (perceptual) scores.
The goal is to attain a low RMSE. The Pearson Correlation Coefficient (PCC)
between the two scores is used as a secondary performance measure, and the
goal is to achieve a high PCC.

The Wilcoxon Signed Ranks test is used to establish whether one model
significantly outperforms a competitor model. Here it is used to investigate
whether the baseline full-set model performance differs significantly from that
of the best reduced-set model. A Bonferroni correction for multiple compar-
isons was used and a conservative p-value (p < .005) was deemed statistically
significant.

7.2.5 Part II: Influence of stimulus length and composi-

tion

In order to understand why the model scores can be sensitive to the length
and the composition of the test stimulus, we recall that many of the speaker
features (e.g. components of PMF and PLF) are of the type “average posterior
probability of a particular phonological class (either a phone such as /s/ or a
phonological class such as ‘plosive’) in the speech intervals realizing a phone
of that class". During model development, we usually employ as much speech
material per speaker as possible and means measured on that material are thus
bound to approximate the true means for that speaker. During test, however, we
want to use short stimuli to reduce the measurement time. In that case, a mean
over the test material can significantly deviate from the “true" mean. Moreover,
since the relative frequencies of occurrence of the infrequent phonemes of the
language strongly depend on the choice of the text, it follows that the number
of intervals supporting a particular feature also strongly depends on the text.

In principle, the same reasoning also applies to the alignment-free features,
that is, there are two phenomena that can affect the computer-generated scores:
variations in the phonetic composition of the text and variations in the length
of the text (in phonemes or syllables). If we only consider randomly chosen text
fragments, the effects of both phenomena will be strongly correlated as they
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both give rise to an effect that is expected to be inversely proportional to the
square root of the text length. The two experiments we conceived attempt to
isolate the two phenomena as much as possible.

Models and speech material

We predict consensus scores of voice quality and speech intelligibility with the
best-performing models identified in Part I. These models were developed using
the readings of complete paragraphs, but are here used to compute scores from
speech samples of different lengths.

The test material in this Part is the material that was set aside in Part I. As
stated in Section 7.2.1, the paragraph was divided into six text fragments (F1-
F6) of approximately 50 syllables each. Per speaker, we compute scores for all
possible stimuli we can construct by combining one up to five text fragments: 6,
15, 20, 15 and 6 stimuli containing 1, 2, 3, 4, and 5 text fragments respectively.
The number of fragments in a stimulus is referred to as the stimulus length
(in text fragments). Table 7.1 lists the individual fragments and examples of
fragment combinations of different lengths.

Text
Parts: P1 P2 P3 P4 P5 P6 P7 P8 P9
Fragments: F1(P1); F2(P2+P3); F3(P4+P8); F4(P5);

F5(P6); F6(P7+P9)

Combining Fragments
Single fragment (n=6) F1; F2; . . . ; F6
2 fragments (n=15) F1F2; . . . ; F5F6
3 fragments (n = 20) F1F2F3; . . . ;
4 fragments (n = 15) F1F2F3F4; . . . ;
5 fragments (n = 6) F1F2F3F4F5; . . . ;

Table 7.1: Illustration of how the nine text parts were recombined into six text
fragments of comparable lengths (upper part of table) and of how the six text
fragments can be employed to create stimuli of varying lengths (lower part of table).

Score processing

Per speaker and per stimulus length, we measure the standard deviation (SD) of
the scores of all stimuli of that length. The SDs reveal the effect of the phonetic
composition on the computed scores for a stimulus of that length. Obviously,
we would not have been able to estimate the SD for a stimulus length of six
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as there is only one stimulus consisting of all six text fragments. This explains
why this stimulus length was not included in the experiment. It is important to
note here that stimuli of length 2 or larger are not independent of each other as
they always share at least one text fragment with another stimulus. However,
in spite of this, the measured SDs are bound to provide useful information on
the effect of phonetic composition as a function of stimulus length.

In order to assess the effect of the length under the assumption that phonetic
variation could be eliminated per length (e.g., by carefully choosing texts for
which the phoneme frequencies are identical), we consider the mean of the
scores of all stimuli of a particular length provided by a particular speaker as
the computer generated speaker score. Using these scores we then compute the
RMSE and PCC for that length.

7.3 Results

7.3.1 Part I: Phonemic variation and model robustness

Voice quality

Table 7.2 lists the performances of the 10 best full-set models and the corre-
sponding reduced-set models when applied to full paragraphs. The full-set mod-
els PMF+AMPEX (RMSE = 122.2) and PMF+AMPEX+ALF.PLF (RMSE =
122.2) attain the highest accuracy, but the differences across models are small:
only 2 of the 10 models of the same type (full-set/reduced-set) perform signifi-
cantly worse (Wilcoxon, p < .005) than the best model of that type. There are
no statistically significant differences between the full-set and the reduced-set
models of a particular combination of feature sets.

Observe that a combination of three feature sets (e.g. PMF+AMPEX+PLF)
does not necessarily lead to a better model than a combination of only two of
these feature sets (e.g. PMF+AMPEX), despite the fact that the model found
in the latter case is an example of an eligible model that could have been found
in the first case. This observation reveals the sub-optimality of the feature
selection process incorporated in the regression model training. The degree of
sub-optimality is expected to increase with the number of features.

Speech intelligibility

For speech intelligibility, the full-set PMF+AMPEX+PLF model is the strongest
performing model (RMSE = 97.4) but the strongest performing reduced-set
PMF model (RMSE = 98.6) is not far behind (see Table 7.3). Nevertheless,
since the PMF+AMPEX model comes very close to the best model in the two
conditions and since it was also the chosen model for voice quality, we will
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consider PMF+AMPEX as the baseline feature set combination in Part II. As
seen for voice quality, only 2 of the 10 competitors of the same type perform
statistically worse than the baseline and there are no statistically significant
differences between the reduced-set and the full-set models for a given feature
set combination.

Feature sets Full set Reduced set

RMSE PCC RMSE PCC
PMF 122.7 0.66 126.3 0.61
PMF+AMPEX 122.2 0.66 123.5 0.64
PLF+PMF 125.2 0.64 130.0 0.58
PMF+ALF.PLF 127.6 0.63 124.8 0.64
PMF+ALF.PMF 129.1 0.58 130.8 0.58
PLF+ALF.PLF 138.9 ** 0.53 137.3 ** 0.54
PMF+AMPEX+ALF.PLF 122.2 0.66 124.1 0.65
PMF+AMPEX+PLF 124.5 0.64 128.9 0.59
PMF+AMPEX+ALF.PMF 127.3 0.63 129.9 0.58
PLF+ALF.PLF+AMPEX 138.9 ** 0.53 136.8 ** 0.54

Table 7.2: Performances (PCC reported to two decimal places and RMSE reported
to one decimal place) of the best 10 full-set models and the corresponding
reduced-set models for voice quality. Also indicated is whether a result is is
statistically worse (** p < 0.005) than the best result in the column.

Feature sets Full set Reduced set

RMSE PCC RMSE PCC
PMF 98.3 0.67 98.6 0.66
PLF+PMF 97.8 0.67 100.9 0.64
PMF+AMPEX 98.8 0.67 100.0 0.67
PMF+ALF.PLF 100.9 0.66 114.4 0.62
PMF+ALF.PMF 101.3 0.65 102.4 0.63
PLF+AMPEX 117.3 ** 0.44 116.1 ** 0.45
PLF+ALF.PMF 117.3 ** 0.45 123.6 ** 0.40
PMF+AMPEX+PLF 97.4 0.67 100.2 0.65
PMF+AMPEX+ALF.PLF 98.8 0.67 110.7 0.63
PMF+AMPEX+ALF.PMF 100.8 0.66 102.5 0.63

Table 7.3: Performances (PCC reported to two decimal places and RMSE reported
to one decimal place) of the best 10 full-set models and the corresponding
reduced-set models for speech intelligibility. Also indicated is whether a result is is
statistically worse (** p < 0.005) than the best result in the column.
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7.3.2 Part II: Effects of stimulus composition and length

Influence of phonetic composition

To investigate the influence of phonetic composition on the computed scores,
we considered the reduced-set PMF+AMPEX model. Per perceptual variable,
per speaker and per stimulus length, we record the SD of the scores across
stimuli. The statistics of these SDs across speakers are listed in Table 7.4. The
mean SD clearly decreases with an increasing stimulus length, but the SD-range
only seems to decrease for speech intelligibility and not for voice quality.

Influence of stimulus length

To isolate the influence of stimulus length on the reliability of the speaker
features, we consider, per variable, speaker and stimulus length, the mean
score found across stimuli. Figure 7.1 shows the RMSE and PCC obtained by
comparing these means to the consensus scores. For both perceptual variables,
the accuracy improves (RMSE decreases and PCC increases) when the test
stimulus is longer. The improvement is significant and close to 10% when
going from 47 syllables (1 text fragment) to 94 syllables (2 text fragments).
The improvement caused by adding a third text fragment is not statistically
significant anymore.

We also inspected the speaker scores generated for single text fragments.
We found that for both perceptual variables, fragment F4 consistently gave rise
to low RMSE and high PCC values (RMSE = 144.7 for voicing and RMSE
= 106.19 for speech intelligibility). When two fragments are considered, the
best combination is F2F4 for both variables (RMSE = 134 for voice quality
and RMSE = 96 for speech intelligibility). It happens that F4 comprises a high
number of distinct phonemes and syllables and a number of shorter phrases
(Dutch: “... en hielp gedurende vijf dagen mee bij het plakken van banden, het
maken van gebroken kettingen, het verzorgen van slaapgelegenheid en het op-

Fragment combination n Voice quality Speech intelligibility

Mean Range Mean Range
Single fragment 6 62 16 - 176 56 18 - 145
2 fragments 15 39 10 - 182 37 14 - 104
3 fragments 20 30 7 - 225 27 9 - 90
4 fragments 15 23 5 - 261 20 8 - 73
5 fragments 6 15 2 - 198 12 3 - 41

Table 7.4: Mean SD and SD-range per perceptual variable of the speaker scores per
combination of text fragments.
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sporen van verkeerd gereden deelnemers"; English: “... and helped for five days
repairing tubes, fixing broken chains, organising accomodation and tracking
down lost participants"). From a modeling perspective, high phonetic variety
may lead to good model accuracy. From a speaker perspective, shorter phrases
may work to the advantage of TE speakers as the syntactic structure allows
inhalation at appropriate boundaries. In other words, possible phonetic variety
is easier to realize.
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Figure 7.1: Accuracy of the mean score (squares/diamonds) and range (vertical
lines) across groups (RMSE and PCC) for voice quality and speech intelligibility as a
function of the number of fragment combinations ( = text size). For comparison, we
include the average RMSE and PCC values for the individual SLPs versus the
consensus scores (horizontal lines).

7.4 Discussion

The first objective of this study was to investigate if and how assessment models
designed to predict human ratings of voice quality and speech intelligibility of
tracheoesophageal (TE) speech degrade when less speech material is available
for making the predictions. This question addresses the boundary conditions
under which current technologies can be applied in clinical practice (cf., the
studies by Clapham et al., 2014, 2015; Mayr et al., 2010; Middag et al., 2014;
Stelzle et al., 2011; Windrich et al., 2008). The second objective was to check
whether ignoring input features that are insufficiently supported by the speech
material leads to models that are less sensitive to variations in the phonetic
content of that material.

We investigated the second objective first. In fact, if we could show that
ignoring input features does not degrade model performance in the case of
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sufficient speech material, we could restrict the study of the first objective to
an analysis of the scores emerging from the best reduced-set model. Based
on our earlier conjecture that the observed frequencies of infrequent phonemes
of a language may differ significantly between texts of the same length, we
investigated whether it is possible to reduce the sensitivity to that source of
variation by prohibiting the model training to access speaker features derived
from utterances of such infrequent phonemes.

To begin with, we created five sets of speaker features that can serve as
inputs to the envisioned assessment models. Using the different feature sets we
then trained assessment models towards consensus ratings of two perceptual
variables. Recall that these ratings can take values from 0 to 1000. We trained
models that had access to one, two or three feature sets because previous
studies (Clapham et al., 2014; Middag et al., 2014) had shown that combining
feature sets generally results in stronger models.

We considered two conditions for the training. In the full-set condition,
the models had access to all features of a feature set while in the reduced-
set condition, they only had access to features referring to a sound (set) with
a sufficiently high frequency of occurrence in Dutch. Note that the linear
regression model training automatically determines which and how many eligible
features it incorporates. Consequently, the number of model parameters is not
necessarily proportional to the number of eligible features.

Comparing corresponding full-set and reduced-set models, led to the conclu-
sion that the performance differences between both model types are not statisti-
cally significant. This means that expelling features does not hurt even when the
test material (all text fragments of the speaker in this case) is long enough and
matched to the length and phonetic content of the training material. In both
conditions, the PMF+AMPEX and the PMF+AMPEX+ALF.PLF models at-
tained the best voice quality models. For speech intelligibility, PMF+AMPEX+PLF
model was the best (RMSE = 97.4) in the full-set condition whereas in the
reduced-set condition, it was the PMF model (RMSE = 98.6). However, for
both perceptual variables the best models were not statistically better than
most other models. Taking all results into account, we selected the reduced-
set models built on the PMF+AMPEX feature set combination as the baseline
models for investigating our first objective. Note that the PMF features alone
suffice to create good models, but the AMPEX features focusing on voicing and
pitch stability do seem to offer a small improvement which is not so surprising
given that TE speakers have difficulties in this respect (Clapham et al., 2015).

Clearly, we expect that longer test stimuli give rise to more reliable model
predictions. To assess how much the phonetic composition of the text influ-
ences the scores we measured the SD of the scores emerging from different
stimuli of a given length provided by the same speaker. To assess how stimulus
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length influences the scores, we compared the mean of these scores with the
consensus score for the speaker.

The first result we can derive from Tables 7.2 - 7.4 is that for a stimulus
length of about 50 syllables, the impact of the phonetic composition is substan-
tial. The mean SD is equal to about 50 - 60% of the expected error made by
the model (compare an SD of 62 to an RMSE of 122.2 and an SD of 56 to an
RMSE of 98.8).

Plotting the mean SD against the stimulus length in a log-log-plot (see
Figure 7.2) reveals that in the beginning, the descent follows the trend that SD is
inversely proportional to the square root of the stimulus length (trend line in the
figure) whereas it is larger for larger stimulus lengths. As mentioned before, two
stimuli composed of multiple text fragments share at least one text fragment.
In fact, the longer the stimulus (in fragments) the larger the percentage of
text they are sharing and the more the observed SD is an under-estimation of
the SD one would have obtained with measurements on independent stimuli
of the same length. The latter explains the larger descent for larger stimulus
lengths. Taking everything into account, we conjecture as a second result that
the impact of the phonetic composition is bound to be inversely proportional to
the square root of the number of syllables in the text: it would take 200 syllables
to reduce the relative impact to 25-30% of the asymptotic RMSE (obtainable
with a very long text).

From Figure 7.1 we conclude that the impact of the stimulus length under
the assumption of equal phonetic composition is not that large: less than 15%
relative for a length of 50 syllables (compare an RMSE of 154.2 to the asymp-
totic value of 136.8 and an RMSE of 112.9 to 94.7). As expected, this impact
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also appears to be inversely proportional to the square root of the stimulus
length, as one can verify by plotting the RMSE as a function of the stimulus
length in a log-log-plot.

In conclusion, voice quality and intelligibility prediction models that only have
access to acoustic-based speaker features describing sufficiently frequent sounds
or sound classes are robust with respect to the length of the speech material
they are being tested on. When there is enough speech material available,
such models are as accurate as similar models that have access to all speaker
features, and, as a rule of thumb, they continue to yield accurate and stable
scores for as long as the test material encompasses at least 100 syllables.
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8
General discussion

Abstract

This dissertation is the result of a desire for an automated, objective method
to support a Speech Pathologist’s auditory-perceptual evaluation of voice and
speech. We investigated the use of automatic tools to predict speech intelligi-
bility and voice quality scores for two cohorts of speakers treated for head and
neck cancer. At the project outset, two tools that use speech technology to
model auditory-perceptual scores were identified. Extending one of these tools,
we have developed speech intelligibility and voice quality prediction models for
the two speaker cohorts. Overall, the models attained performance levels similar
to that of a group of listeners. The results highlight that with refinement of the
models, the clinical application of the tool to support a clinician’s perceptual
evaluation is possible. In this chapter we summarise our findings and discuss
what we have learnt about developing prediction models within the context of
the speech pathology practice.

8.1 Study objective

Auditory-perceptual evaluation is a frequently used method of evaluation in the
Speech Pathology clinic despite its drawbacks in terms of listener variability and
listener bias (Kent, 1996). Unlike perceptual evaluation, computer-generated
perceptual scores should only vary upon re-analysis if the system’s underlying
acoustic models or prediction models are changed. Computer-generated evalua-
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tion has the potential to be performed with a similar level of ease as perceptual
evaluation. We believe there is a role for speech technology in the clinical set-
ting and this belief has shaped our vision of computer-generated “perceptual”
scores being used alongside a clinician’s auditory-perceptual assessment. This
thesis explores whether, and how, existing automatic evaluation tools could be
adapted to predict voice quality and speech intelligibility of Dutch speakers with
head and neck cancer.

Our literature review in Chapter 1 highlighted that strong correlations had
been reported between automatically derived scores (e.g. word accuracy rate)
and observed scores and that promising prediction models had been developed.
We hypothesised that a tool already developed for Flemish speakers to predict
transcription-based speech intelligibility scores for consonant-vowel-consonant
stimuli could be adapted for our study objective. This required expanding the
handling capability of the tool on a speech stimuli level (running speech/con-
nected words), type of predicted variable (scale based) and development of
prediction models for new variables (e.g., voice quality). It was also unknown
how the Flemish-trained system would perform if provided Dutch speech mate-
rial.

8.1.1 Study aims

The primary aim was to adapt existing tools for our outcome variables (speech
intelligibility and voice quality), speaker groups (two groups of speakers treated
for head and neck cancer) and the recorded material available (Dutch passage
read by Dutch speakers). Our hope was to create models that could predict
these variables as a function of various input features (e.g., phonological fea-
tures) and attain model performance levels comparable to an average listener.
In this way, computer-derived scores could reflect a rating provided by an addi-
tional listener. A secondary aim was to explore the relationship among acoustic
measures, categorizations of acoustic information according to signal type and
evaluations of voice quality for vowel level stimuli. See Table 8.1 for a summary
of the speaker groups and investigations.

8.1.2 Research strategy

For our two speaker groups we investigated how various systems could be
used individually or combined to achieve reliable prediction models for run-
ning speech. We explored the use of up to five feature sets as inputs for
prediction models. These five feature sets can be categorised according to
alignment strategy (forced alignment or alignment free and the type of infor-
mation (monophone, phonological, acoustic). Figure 8.1 summarizes the five
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Stimuli Variable Speaker group
CCRT TL

Running speech Speech intelligibility X X
Voice quality X X
Articulation X
Accent X

Sustained vowel Voice quality X
Acoustic signal typing X

CCRT: concomitant chemoradiotherapy; TL: total laryngectomy

Table 8.1: Speaker groups and investigated variables

feature sets. The four alignment free and forced alignment feature sets were
extended from the existing Flemish tool.

Our primary variables were speech intelligibility and voice quality but we
extended our models to include articulation and accent given the strong link
between articulation and speech intelligibility and the accent variations present
in the Netherlands.

For sustained vowel stimuli, we completed exploratory work into the relation-
ships between acoustic measures, signal typing and voice quality for speakers
after total laryngectomy.

8.2 Chapter summary by speaker group

8.2.1 CCRT speaker group (Part I)

Chapter 2 In this chapter we described the recordings, perceptual data and
annotations used in our studies. The speech recordings were collected by van der
Molen et al. (2012) as part of a clinical trial into preventative rehabilitation on
speech and swallowing after concomitant chemoradiotherapy (for full details on
speakers, treatment and interventions see van der Molen et al., 2012). Part of
this speech material included recordings of a 189-word passage from a Dutch
fairy tale read by speakers before treatment (n=54) and at 10-weeks and 12-
months post treatment (n=48 and n=39, respectively).

To develop a group-specific prediction model, we collected scale-based rat-
ings for variables speech intelligibility (7-point scale) and phonation (5-point
scale) as well as several additional aspects (e.g., articulation and accent, both
on a 5-point scale). A group of 13 semi-professional listeners evaluated two
fragments of the recorded text. There was no effect of text fragment on speech
intelligibility score. At a group level there was no effect of evaluation moment
on intelligibility score.
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Figure 8.1: Overview of feature sets used in studies with running speech stimuli.
Sets are listed by alignment strategy and feature type. Auditory model-based pitch
extractor (AMPEX)

Chapter 3 Using the speech intelligibility perceptual data presented in Chap-
ter 2, we started from the work by Middag et al. (2008, 2010) to investigate
two questions:

1. Was a new alignment-free feature set less text dependent and less lan-
guage specific than alignment-based feature sets?

2. Does the type of acoustic model (Flemish versus Dutch) in the underlying
system impact prediction model accuracy?

Answering these questions was necessary to extend the tool to analysis of run-
ning speech of Dutch speakers. We also reported whether the top-performing
model was able to track changes in speech intelligibility over time.

Comparing results from intelligibility prediction models built on Flemish or
on Dutch acoustic models, we established that in general, the strongest perfor-
mance occurs when the underlying acoustic models match that of the speaker.
The alignment-based methods are sensitive to language whereas alignment-free
methods attain comparable results regardless whether the underlying acoustic
model was Flemish or Dutch. Comparing results emerging from prediction mod-
els trained on differing fragments of the text, we discovered that all feature sets
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are largely text-independent, at least in the absence of reading errors.
A model combining forced-alignment and alignment-free information at-

tained stronger performance than performance with individual features and was
capable of detecting progress/deterioration to a similar extent as a group of
raters. On the basis of the results from this study, our future experiments only
considered alignment-free and forced-alignment feature sets supported with un-
derlying Dutch acoustic models.

Chapter 4 In a similar vein to the previous chapter, we developed prediction
models for the perceptual variables articulation and phonation/voice quality.
Our reasoning was that if these could be achieved, combining these models
with the speech intelligibility model from Chapter 3 would mean an automatic
tool capable of multidimensional ‘perceptual-like’ evaluation.

There is considerable articulatory-acoustic variation in the Netherlands due
to aspects such as regional variations and language background. For the event
that degree of accent could influence model performance for speech-related
perceptual variables, we also explored a prediction model for the perceptual
variable accent (perception of degree of accent compared to ‘standard’ Dutch).
By including this perceptual variable, we envisage that clinicians can consider
the computed accent score into account when interpreting computer-derived
scores of speech intelligibility or articulation.

Our models could make use of monophone and phonological feature sets
derived from forced-alignment or alignment-free processes and pitch and voic-
ing outputs from the AMPEX pitch and voicing extractor (Figure 8.1). We
anticipated that pitch and voicing features would be particularly suitable for
the phonation/voice quality model. The tested models included single-feature
models (e.g., only monophone features) and multiple-feature models that used
two or three feature sets (e.g., monophone features + phonological features).
Once the strongest articulation and phonation models were developed, we in-
vestigated the prediction model’s success in identifying change in perceptual
scores over time. We did this by considering the direction of change in percep-
tual score between the three evaluation momement, that is, recordings made
before cancer treatment, at short-term follow-up and at long-term follow-up.

The results highlight that speaker features emerging from a forced align-
ment between the speech and the text as well as speaker features emerging
from a plain analysis of the temporal evaluation of acoustic model outputs
(i.e., alignment-free method) give rise to good assessment models of compa-
rable accuracies. The models attain varying levels of success performing trend
classification but there were no instances where a positive change in perceptual
scores was classified as a negative change in computed scores, and vice versa.
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8.2.2 Total laryngectomy speaker group (Part II)

Tracheoesophageal speech is a method of voice restoration after total laryn-
gectomy. Tracheoesophageal speech involves a prosthetic device being placed
in a surgically created fistula between the trachea and esophagus. When a
speaker occludes the tracheostoma after inhalation, pulmonary air is redirected
through the prosthesis where it passes and causes a new voicing source, called
the neoglottis, to vibrate and create sound (see 1.1.2 for details). Many people
develop functional alaryngeal speech after total laryngectomy, but voice quality
is variable.

The audio stimuli used in Part II of this thesis were collected at the Nether-
lands Cancer Institute as part of various research studies over a 10-year period.
The speech material includes recordings of the sustained vowel /a/ and a read
text approximately 300-syllables/150 words long from 87 tracheoesophageal
speakers. We collected scale-based ratings for variables voice quality (vowel
and text stimuli) and speech intelligibility (text stimuli) and acoustic signal
type categorizations according to the visual characteristics of the vowel spec-
tograms. Computerized visual analogue scales and consensus-derived scores
were used in these studies as opposed to equal appearing interval scale and
averaged scores used in the CCRT studies.

Compared to Part I of this thesis, Part II is more exploratory in nature. In
Chapter 5 and 6 we look at the use of acoustic signal typing as a correlate
of voice quality and the association between acoustic measures and acoustic
signal typing. In the remaining chapter we consider prediction models using
the same speaker features discussed in Part I from the CCRT speaker group,
only we focus on the effects of phonetic variety and the length of the spoken
material rather than identifying which combination of speaker features produce
the strongest prediction models.

Chapter 5 We took the opportunity to investigate the extent acoustic vari-
ables for vowels, such as harmonic-to-noise ratio, can be used to predict the
consensus-derived categorization of the same vowel into one of four acoustic
signal types. Although classification into signal type may be less subjective
than ratings of voice quality because of the use of visual-based criteria, there
remains a subjective component in the task. Our research interest led to the
development of the TEVA computer program (van Son, 2012) which runs as an
extension to the speech analysis program Praat (Boersma and Weenink, 2009).
In this way, categorization of the spectrogram into signal type and extraction
of acoustic measurements are achievable within a single computer application.

Although several acoustic measures are reported in the literature to corre-
late with acoustic signal type (see Table 5.1), we found measures reflecting the
presence and duration of voicing (voicing fraction; maximum voicing duration)
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and measures reflecting the amount of noise (harmonic-to-noise ratio) were the
most salient acoustic measures. On their own, voicing fraction and maximum
voicing duration supply enough information to achieve a classification accuracy
of a vowel into its acoustic signal type of above 60%. Including acoustic mea-
sures of the harmonic-to-noise ratio improved the classification rate to above
70%.

Chapter 6 Previous research reports a relationship between acoustic signal
type and perceptual ratings of voice quality for two different speech materials,
namely vowels and running speech for signal type and voice quality, respec-
tively (D’Alatri et al., 2011; van As-Brooks et al., 2006). In this chapter we
investigated whether this relationship held when only the sustained vowel was
considered and what the rater-reliability was between signal type and perceptual
scores.

We made use of two types of perceptual scores: continuous scores made
on a computerized visual analogue scale and these scores converted to a 4-
point ordinal score. The agreement between the two raters was higher for
categorization into acoustic signal type than for ordinal scale scores of voice
quality. Although there was a statistical relationship between signal type and
voice quality, each signal type co-occured with a range of voice quality scores.

Chapter 7 In this chapter we turned our attention to the impact of the speech
material, that is, the phonetic composition and length of the material, on pre-
diction models. This is an important consideration as it could influence the
selection of test material for future use of automatic predicted scores. We first
considered model performance under two conditions: model development with
access to all speaker-features as model inputs or model development with access
to a sub-set of speaker-features as model inputs. The sub-set was restricted
to features that one could expect to occur in Dutch. Results indicated no
statistically significant difference in model performance between the conditions.

In the second part of this chapter we investigated how predicted scores
vary depending on the length of the stimulus and its composition. We found
that model stability generally improves as more speech material is available and
performance is close to what is attainable when the speech material contains
approximately 100 syllables.
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8.3 Key findings
Our results can be summarised in eight key findings:

1 Prediction models generally achieve stronger performance when the system’s
underlying acoustic models match the speaker group (e.g. model for
Dutch speakers utilizing acoustic models trained on Dutch speech) [Ch.2];

II Dual-feature models generally attain stronger performance results than single-
feature models, however these differences may not be statistically signif-
icant [Ch.3, Ch.4, Ch.5, Ch.7];

III Combining alignment-free and alignment-based features generally leads to
optimal model configuration [Ch.3, Ch.4] (nb: speech intelligibility model
for speakers post total laryngectomy attains best performance with two
forced-alignment speaker features;

IV Feature sets are largely text independent with performance close to what is
attainable when the speech material contains approximately 100 syllables
[Ch.2, Ch.7];

V Low perceptual scores, in particular for the perceptual variable voice quality,
are difficult to model (Ch.3, Ch.4);

VI The models attain varying levels of success performing trend classifications,
however there are no instances where a clear positive trend was classified
as a clear negative trend [Ch.3, Ch.4];

VII Including pitch and voicing information in voice quality prediction models
leads to improved model performance [Ch.4, Ch.7];

VIII In its current form, acoustic signal typing of the vowel /a/ provides limited
information on the perception of voice quality for the same vowel [Ch.5,
Ch.6].
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8.4 Methodological considerations

In the sections below we outline some of the methodological considerations we
encountered in our studies. The topics are discussed under three themes of
auditory-perceptual, speech stimuli and automatic evaluation considerations.
There is, however, considerable overlap among the themes.

8.4.1 Auditory-perceptual considerations

To develop prediction models for the two speaker cohorts, we considered it
necessary to (i) have auditory-perceptual measures that allowed us to compare
any speaker in a group to another and (ii) have auditory-perceptual scores
for a corpus that were from the same group of listeners. To achieve this,
the recordings from each corpus were re-evaluated by groups of listeners as
the original scores for the CCRT cohort were derived from paired-comparisons
of single speakers and the scores for the TL corpus were from varied listener
protocols and evaluation methods.

8.4.1.1 Perceptual scale

There is little consistency across published studies regarding how quality of
speech and voice is measured. The scoring methods vary according to the type
of stimuli evaluated (e.g. sustained vowel, single words, running speech), the
method of evaluation (e.g. transcription, scale), the scale type (e.g. visual
analogue scale, Likert scale) and the features used on a scale (e.g. tick marks,
anchors, polarity) (see reviews by Barreto and Ortiz, 2008; Kent, 1996; Miller,
2013).

Our motivation for using scaling measurement techniques was because it is a
frequently used scale in auditory-perceptual studies (see reviews by Barreto and
Ortiz, 2008; Miller, 2013), is often used to derive the target perceptual score in
other prediction studies (e.g., Bocklet et al., 2012; Haderlein et al., 2007; Hattori
et al., 2010). At the time the speech recordings were collected, standardized
sentence intelligibility tests or established sets of semantically unpredictable
sentences for evaluation by means of transcription were not available for Dutch
speakers.

Although transcription-based scores are considered a closer representation
of the construct speech intelligibility, transcription accuracy can increase as the
length of the speech stimulus increases as the listener can make use of linguistic
and prosodic information if the content is not controlled. To negate this, all
listeners had access to the written transcripts of the connected speech samples.
In this way, we endeavoured to collect speech intelligibility scores that represent
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an estimate of the listener’s ease decoding the auditory signal and voice quality
scores that reflect the listener’s judgement of phonation quality.

Our investigation began with the CCRT corpus and we elected to use an
ordinal scale (7-point scale for speech intelligibility and 5-point scale for other
variables). Ordinal scales are a common method of data collection in computer
modeling studies and in general auditory-perceptual studies. In the second part
of our study, we changed our evaluation protocol to include perceptual ratings
on a digitalized version of a visual analogue scale. This change was driven by a
desire for continuous rather than quasi-continuous perceptual scores (i.e. mean
score derived from ordinal ratings) and to maximize the sensitivity of observed
scores as a rater was not limited to a set number of ordinal categories.

Compared to ordinal scales, visual analogue scales are less frequently used in
auditory perceptual studies. This is likely because the original analogue scales
required manual calculation (i.e. an evaluator manually measuring the distance
with a ruler). Our computerized version required no manual measurement. A
criticism of the visual analogue scale is that listeners tend to avoid using scale
extremes and the mid-section of the scale then becomes over-used (Cowley and
Youngblood, 2009; Eadie and Kapsner-Smith, 2011). Despite this drawback,
auditory-perceptual data collected on a visual analogue scale is an established
method of data collection (Karnell et al., 2007; Nemr et al., 2012; Wuyts et al.,
1999; Zraick et al., 2011). Subsequent researchers in our research group have
also continued to use this scale (Kraaijenga et al., 2016).

8.4.1.2 Observed score

Regardless of the scale used for data collection, it is common practice to use
the average score from a group of listeners within the area of modeling speech
and voice quality (Bocklet et al., 2012; Haderlein et al., 2011; Schuster and
Stelzle, 2012). Likewise, this is the technique we utilized in our initial studies.
Although the listeners who evaluated the CCRT recordings were, as a whole,
reliable (evidenced by significant ICC), we considered it likely that variability
of lower-range perceptual scores was impacting on model performance. This is
because if there is more variation among the scores of the listeners for lower
quality speakers, this will be reflected in variation in the mean scores, which in
turn, will result in lower performance accuracy for prediction models.

In the second part of our study, rather than use mean scores we moved
to consensus-derived scores for the total laryngectomy speaker group. This
method is less frequently used in research studies (see examples by de Bruijn
de Bruijn et al. (2011a,b) and De Bodt et al. (2002)). Our rational for using
consensus data was to maximize the sensitivity of the scale and obtain scores
closer to clinical practice, for example, a clinician consulting a colleague for
his/her opinion with the outcome being an agreed rating. A criticism of this
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method is, however, that the consensus-derived rating may not be independent
of the other rater as a listener may allow the other rater to influence his/her
opinion on the ’severity’ of a recording.

We used consensus-derived scores for our studies investigating acoustic sig-
nal type categorization of vowels (categorical data) and the auditory-perceptual
evaluation of vowels and running speech made on a visual analogue scale (0-
1000 scale points) when individual ratings differed by more than 125 scale
points. We believe consensus-derived scores are particularly important in our
study given the low, yet significant, levels of inter-rater reliability before con-
sensus round and the percentages of agreement for auditory-perceptual scores
(TE sustained vowel voice quality 41%; running speech voice quality 38% and
speech intelligibility 54%). Note that the consensus methodology was estab-
lished before perceptual-data collection occurred. Without a consensus round,
observed scores would have had a smaller scale distribution.

In our study exploring the relationship between acoustic signal type (cate-
gorical four types of signals) and auditory-perceptual evaluation of voice quality,
we utilized both consensus continuous quality scores and ordinal quality scores
(derived by dividing the visual analogue scale into four equal parts and recoding
the continuous consensus scores according to these intervals). The low level of
agreement between signal type and recoded interval scores, yet the significant
main effect of signal type on the visual analogue data highlights that scale divi-
sion into equal intervals may be too simplistic a division. An alternative division
with unequal intervals may more accurately reflect the way listeners partition
the scale into severity regions (e.g., Lopes et al., 2012; Yu et al., 2001).

8.4.2 Speech stimuli considerations

The speech recordings used in this thesis were collected as part of various
research projects at the Netherlands Cancer Institute over a period of a decade.
The running speech recordings are not the same for the two speaker groups and
neither text is phonetically balanced. The recorded texts were similar in that
they were both of neutral content and did not require high-level literacy skills.
Ideally the read text would be the same for both speaker groups, however this is
the reality in the clinical situation; a clinician will provide a text to elicit the type
of speech needing to be evaluated (e.g., text with considerable nasal consonants
or certain prosody requirements) and this text may not be a standardised text.

It is difficult to assess the impact of having different text-level stimuli for
the two corpora in order to compare model performance for the two speaker
groups, however our results indicate that text differences are not detrimental
to model performance. The corpus for the CCRT speaker group contained a
read paragraph made at three evaluation moments (before medical treatment,
short-term follow-up and long-term follow-up) and for each recording there was
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a perceptual score for fragment A and fragment B. The two fragments were
not identical, but were similar in terms of number of total and unique words,
average word length and phoneme balance (see page 57 for details). Despite not
being identical, our results showed that the prediction models achieved similar
performance results regardless whether the model was trained on one fragment
and tested on the other.

The results in our final chapter also support our prediction models being
robust against differences in phonetic context, on the condition that there is
phonemic variety and the analysed text is approximately 100 syllables in length.
This finding may also explain the initial result that there was no performance
difference between a prediction model built for Fragment A and tested on Frag-
ment B as both fragments were approximately 100 syllables in length. The
implication is that we can, with some degree of confidence, compare model
performances across speaker groups and across speech stimuli so long as the
studies share methodologies in terms of automatic evaluation protocols (i.e.,
sampling strategies, performance measures).

8.4.3 Automatic evaluation

8.4.3.1 Measuring performance

As highlighted in the introduction chapter (see Section 1.2, pg. 9), performance
is often reported as the relationship between the predicted, computer-derived
scores and the observed perceptual scores. Frequently used measures are the
Spearman rank order correlation coefficient, Pearson correlation coefficient and
the root mean square error (RMSE).

We elected to use both the RMSE and Pearson correlation coefficient in
our studies. We used the RMSE to guide selecting speaker features to include
in a model and we used the RMSE complemented with Pearson correlation
coefficient to evaluate model performance. The RMSE reflects the distance
between the predicted and observed data points and, as Middag et al. (2009)
stated, compared to other measures the RMSE is more stable when a model is
developed on a large data set and evaluated on a smaller data set. Incorporating
the Pearson correlation coefficient provided information on the strength of the
relationship between computed and observed and this measure continues to be
frequently used (e.g., Bocklet et al., 2012; Haderlein et al., 2011, 2012, 2014).

Although it is tempting to use the Pearson correlation coefficient as a man-
ner of directly comparing prediction models among studies, differences in sys-
tems, cross-validation strategies, and perceptual scales inhibit interpreting re-
sults in this fashion. We have applied the PCC for quasi-continuous data,
including it as a secondary measure allows us to us to compare performance
results with those from other research groups.
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In terms of identifying the target performance level for a prediction model,
our first study (Chapter 2) used the average Pearson correlation coefficient of
each rater against the mean of the group of raters to set performance target. In
subsequent studies we also calculated the RMSE to reflect this measure being
our primary performance measure.

The inclusion of the RMSE and the Pearson correlation coefficient allowed
us to identify models that achieved target performance levels (i.e., RMSE be-
low target performance and Pearson correlation coefficient above target per-
formance) and models that were competitive (i.e., only one measure achieved
target performance).

8.4.3.2 Tracking trends

The ability to accurately identify change or no change is a key requirement of a
prediction model if automatic perceptual evaluation is to be incorporated into
clinical evaluation protocols. One of our study aims was to look at whether au-
tomatically derived scores could track change (increase/decrease, no difference)
in speech intelligibility and voice quality between evaluation moments. Unlike
the TL corpus, the CCRT corpus contained longitudinal speech recordings and
allowed us to investigate the ability of the best-performing speech intelligibility
model to identify change between evaluation moments.

Although our preliminary analysis of the perceptual data for this group of
speakers (see Chapter 2) indicated that there was no significant difference in
mean perceptual scores over time, we were interested in ability of the best-
performing prediction models to identify change between evaluation moments
at a speaker level for the cases where listeners agreed on a change in quality.
The listeners as a whole disagreed on the direction of change for much of the
speech recordings. For example, of the 245 speech intelligibility comparisons
available1, a clear change (increase/decrease) was observed in 62 pairs (see
Table 3.5, pg. 72).

The reasons for this bias are likely a combination of connected factors.
One explanation may be that parts of the underlying system fail or underesti-
mate values for speech samples with low perceptual scores. As far as we are
aware, systematic evaluation of the performance of the phonological features
and monophone features either via forced-alignment or alignment-free has not
been investigated.

A second explanation may be the increased variation in the perceptual scores
at low speech qualities, means that the prediction model will have lower accu-
racy for scores in this range. In other words, if low perceptual scores are less
reliable and difficult to predict, the trends derived thereof are also bound to

1
T1-T0 93 pairs, T3-T1 74 pairs, T3-T0 78 pairs



164 Chapter 8

be unreliable and inaccurate. The plots of predicted against observed scores
consistently highlight that prediction models are less accurate for lower mean
perceptual scores. Whether this is because of system failure, fewer data points
in this range, increased variation in observed scores in this range or a combina-
tion of all these points is unclear.

8.5 Clinical application

Within the area of head and neck cancer and outside our studies, prediction
models have been developed for speakers treated surgically for oral cancer who
have undergone total laryngectomy and speak using tracheoesophageal speech
and have undergone partial laryngectomy The majority of studies have modelled
speech intelligibility.

Model performance varies among the studies and most models achieve per-
formance levels that are similar to or that exceed the average listener perfor-
mance. Directly comparing the performance results among studies is difficult
due to differences in speaker characteristics, measuring scales, calculation meth-
ods and sampling strategies.

8.5.1 Beyond predicting perceptual scores?

It is interesting to consider the features selected as assessment model inputs
and the similarities with the known speech and voice characteristics of a speaker
group. Within the CCRT speaker cohort, speaker features selected as model
inputs for the articulation and speech intelligibility models may reflect tongue
movement in the diagonal of the vowel trapezium and production of anterior
lingual consonants (e.g., /l/, /s/). Acoustic studies by Jacobi et al. (2010,
2013) and Kraaijenga et al. (2015) on the same speaker cohort discussed in this
thesis, reported significant relationships between tumor location and acoustic
measures related to tongue movement, tongue precision, velum movement and
velum control.

Similar results have been reported for other speaker cohorts treated for head
and neck cancer (de Bruijn et al., 2009; Whitehill et al., 2006) and tongue motil-
ity is regarded as a strong predictor of speech outcome after cancer treatment
(Schuster and Stelzle, 2012, p.295). Features selected as inputs for the CCRT
phonation/voice quality model may reflect the properties at the level of the
vocal-source (e.g., presence and amount of voicing) and resonance characteris-
tics (e.g., nasality).

Unfortunately, we have not yet reported the speaker features in the running
speech prediction models for the total laryngectomy speaker group due to time
constraints. The acoustic variables used in the exploration of sustained vowels
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and signal typing showed that the presence and duration of voicing were salient
features related for the four acoustic signal types. The predictors of voice quality
for the CCRT phonation model and the acoustic predictors of signal type for the
speakers post total laryngectomy use input reflecting the presence and duration
of voicing.

Although the model inputs (i.e., the various individual speaker features)
can be linked to known speech or voice characteristics of the speaker group,
the selection of a feature does not necessarily equate with a deficit compared
to control speakers. The underlying acoustic models are developed on speech
materials from control speakers but the prediction models takes input features
based on a feature’s discriminate or predictive power for a specific group of
speakers. The goal of a prediction model is to find the smallest number of
features that provide the greatest model accuracy.

The papers contained in this thesis have focused on the development of
prediction models using various speaker-feature information as model inputs.
We did not investigate whether speaker feature information provided clinically
relevant information. There is a trend for studies to consider whether this
information could guide clinical intervention (see 8.6). In its current form, the
strength of speaker features lies in their power as model inputs and speaker
profiling is only recommended as a descriptor.

8.6 New developments

Since the initial literature search discussed in Chapter 1, research groups have
continued developing prediction models (Haderlein et al., 2011, 2012; Mayr
et al., 2010) and have investigated how sensitive models are to language (Hader-
lein et al., 2014). Over the last five years, papers have been published in which
computer-derived ratings are used as a dependent variable.

Repeating this initial search strategy with updated search dates, several
studies were published in which computer-based speech intelligibility scores were
the only speech-related dependent variable for three speaker groups: speakers
treated for oral cancer (Stelzle et al., 2011, 2013), speakers with cleft lip and
palate (Schuster et al., 2012) and speakers with dental prostheses (Knipfer
et al., 2012, 2014)2.

8.6.1 Tracking change

Reports indicate that automatically-derived speech intelligibility scores can be
sensitive to changes in nasality post nasal surgery (Mayr et al., 2010), medical

2
search dates 1 January 2011 to 1 August 2016
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treatment for oral cancer (Stelzle et al., 2011, 2013) and changes in dentition
(Knipfer et al., 2012, 2014).

The largest of these studies used the PEAKS system to measure the word
recognition rate of speakers before treatment for oral cancer and at four mo-
ments after treatment (12-24 days; 3, 6 and 12 months) (Stelzle et al., 2013).
There authors reported a significant influence of tumor localization, resection
volume and radiotherapy on recognition scores post-treatment. Although word
recognition rate is not a direct substitute for speech intelligibility scores, as only
correlation with auditory-perceptual ratings of speech intelligibility have been
established, these results are promising.

8.6.2 Language-/system independence

Haderlein et al. (2014) reported that AMPEX features combined with alignment-
free phonological features (ALF.PLFs with Flemish acoustic models) could be
used to predict the speech intelligibility scores of German speakers with dyspho-
nia to a level close to target performance. This could indicate that although
phonological features are trained on Flemish speakers, the broad categories re-
lating to manner, place and voicing are robust enough that when combined with
AMPEX acoustic information, model performance is similar to the average of
a group of listeners.

Our findings in Chapter 3 indicated that in general models attained stronger
performance levels when the underlying acoustic models matched those of the
speaker, however alignment-free features were more consistent when a mismatch
was present. In view of the data presented in Chapter 4 where we observed that
AMPEX features were include in top-performing speech intelligibility models
when cancer involved the larynx, it is understandable that AMPEX features be
selected for modelling speech intelligibility of speakers with dysphonia.

8.6.3 ASISTO

The speaker features discussed in this thesis have been included in a prototype
system ASISTO (Automatic speech analysis during speech therapy in oncol-
ogy3). This system is designed to offer speech pathologists an opportunity
to access automatic computer-derived perceptual scores of speech and voice
quality.

Kraaijenga et al. (2016) recently applied the ASISTO prototype system to
new speech recordings from a subset of the OC speaker cohort discussed in this
thesis. These 22 new speech recordings were obtained 10 or more years post
CCRT. The authors also collected auditory-perceptual information on several

3
https://asisto.elis.ugent.be
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aspects quality, including speech intelligibility. Although a strong correlation
was reported between ASISTO speech intelligibility scores and mean percep-
tual speech intelligibility scores, ASISTO scores did not indicate an effect of
treatment modality (conventional radiotherapy vs. intensity modulated radio-
therapy) on intelligibility scores whereas auditory-perceptual scores significantly
differed between the two groups.

It is unclear based on the information presented in Kraaijenga et al. (2016)
how the authors computed the speech intelligibility scores as outputs are only
reported for text-aligned and alignment-free data obtained using the ELIS sys-
tem (the ELIS system provides phonological information, referred to in this
thesis as PLFs). This initial step in the development of ASISTO indicates a de-
velopment from research-based use of automatic evaluation to the clinic-based
implementation of automatic evaluation.

8.7 Conclusion
The studies reported in this thesis showed that automatic perceptual-like eval-
uation of speech intelligibility and voice quality for speakers treated for head
and neck cancer is attainable with the current speech technologies. The pre-
diction models we have developed for running speech are created to support a
clinician’s auditory-perceptual evaluation; models have not been created with
the intention of substitution. Our studies have also shown that acoustic signal
typing in its current form for sustained vowels provides limited information on
the auditory-perceptual evaluation of the same stimuli.

The ASISTO project was undertaken to move the technology developed
and presented in this thesis closer to the clinical setting. The project aims to
produce a therapy and evaluation tool that can be used by both clinicians and
patients for evaluation purposes and as a feedback tool.
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Samenvatting:
Automatische beoordeling van stem en
spraakverstaanbaarheid na behandeling

voor hoofd-halskanker

Achtergronden Kanker in het hoofd-halsgebied en de behandeling daarvan
kunnen een negatief effect hebben op iemands stem en spraak. Voor de logope-
dist vormt het beoordelen van de verstaanbaarheid en kwaliteit van de spraak
een belangrijk onderdeel van de behandeling van de patiënt omdat het een in-
dicatie geeft van de ernst van de pathologie en de vooruitgang die de patiënt
reeds maakte. Het objectief beoordelen van iemands spraak of stem is echter
een subjectief gegeven dat wordt beïnvloed door tal van factoren, zoals familia-
riteit van de logopedist met de patiënt en de test items. Luisteraars beoordelen
vaak ook op een inconsistente manier. Een computer is van nature objectief en
wel consistent in het uitvoeren van deze taak.

In dit onderzoek werden automatische voorspellingsmodellen ontwikkeld
voor de beoordeling van spraakverstaanbaarheid en stemkwaliteit van twee
groepen van sprekers die behandeld werden voor hoofd-halskanker. De eerste
groep, besproken in deel I van dit proefschrift, betreft patiënten met voort-
geschreden kwaadaardige tumoren in het hoofd-halsgebied. Deze patiënten
kregen een niet-chirurgische kankerbehandeling, namelijk concomitante chemo-
radiotherapie (CCRT). Bij deze behandeling worden de chemotherapie en be-
straling gelijktijdig toegediend. Een dergelijke behandeling kan iemands stem
en spraak nadelig beïnvloeden. De tweede groep wordt gevormd door patiën-
ten die werden behandeld voor voortgeschreden kwaadaardige tumoren van het
strottenhoofd. Hiervoor ondergingen deze patiënten een totale laryngectomie
(TL), een operatie waarbij het strottenhoofd en dus ook de stembanden worden
verwijderd. Na een TL is spreken weer mogelijk met behulp van een stempro-
these. Dit hulpmiddel bevat een éénrichtingsklep, waardoor weer stemvorming
mogelijk is omdat de uitademingslucht langs trillende structuren in de slokdarm
naar de mondholte kan stromen. Deze zogenaamde tracheoesofageale spraak
klinkt duidelijk anders dan de spraak vóór de operatie.
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Overzicht van het proefschrift Het Nederlands Kanker Instituut heeft twee
grote collecties spraakopnames van deze twee groepen sprekers, waarin ze een
kort verhaal voorlezen. Deze collecties worden beschreven in hoofdstuk 2
(CCRT) en hoofdstuk 5 (TL). Al deze spraakopnames zijn door logopedisch
geschoolde luisteraars beoordeeld op stemkwaliteit en spraakverstaanbaarheid.
In hoofdstukken 3, 4 en 6 presenteren we een aantal manieren om automa-
tisch te voorspellen hoe een luisteraar de opnames zal beoordelen. Daarvoor
gebruiken we verschillende vormen van spraaktechnologie die zijn gebaseerd op
het feit dat de computer herkent wat de spreker gezegd heeft in termen van
individuele klanken, op de kenmerken van het spraakgeluid, en/of op basis van
akoestische informatie.

Met behulp van computers kunnen we voorspellingsmodellen ontwikkelen
op basis van informatie uit de spraakopnames zelf en/of door het vergelijken
van wat er gezegd zou moeten zijn met wat de computer ‘gehoord’ heeft. In
een van de studies onderzochten we ook hoe goed de voorspellingsmodellen
waren wanneer er een mismatch was tussen de taal waarmee ze waren getraind
en de taal van de spreker. In ons geval was de computer getraind om Vlaamse
spraakopnames te analyseren, maar voerden wij Nederlandse opnames in. We
vonden dat modellen, die wat er daadwerkelijk gezegd was vergeleken met wat
had moeten worden gezegd, in deze situatie minder goed presteerden dan mo-
dellen, die het door de computer “gehoorde” niet hoefden te vergelijken met de
doeltekst maar gewoon de variatie van het spraakgeluid analyseerden.

In onze zoektocht naar de optimale modellering van de voorspellingen, von-
den we dat wanneer het model meer en verschillende soorten sprekerkenmerken
ter beschikking heeft, het verschil tussen de beoordelingen door de computer
en de luisteraar kleiner wordt. Sommige van de beste modellen presteren op
een niveau dat vergelijkbaar is met dat van een gemiddelde luisteraar.

In de hoofdstukken 4 en 7 konden we laten zien dat vergelijkbare resultaten
kunnen worden verkregen voor het voorspellen van beoordelingen van Articu-
latiekwaliteit en Accent (zie hoofdstuk 4) en dat de modellen ook gebruikt
kunnen worden voor TL-sprekers (zie hoofdstuk 7).

Een belangrijk aspect van computermodellen is uiteraard de betrouwbaar-
heid ervan. In hoofdstuk 7 vonden we dat de prestaties van het voorspel-
lingsmodel betrouwbaar worden wanneer de computer voldoende voorbeelden
van elke klank ziet. We vonden dat aan dit criterium voldaan is wanneer het
spraakmateriaal tenminste 100 lettergrepen lang is.

Veel akoestische metingen correleren, vaak sterk, met Acoustic Signal Ty-
ping (AST ), een classificatie van de spraak van TL-patiënten. In hoofdstuk
5 laten we zien dat slechts twee soorten akoestische informatie nodig zijn om
een stem te kunnen indelen in één van de vier AST groepen. De eerste is de
stemhebbendheid, gerepresenteerd door de Voiced Fraction (VF ) en/of de
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maximale fonatieduur (Maximum Voicing Duration; MVD). De tweede is de
ruis in de stem, gerepresenteerd door de Harmonics to Noise Ratio (HNR). Dit
betekent dat de stemhebbendheid, fonatieduur en hoeveelheid ruis de belang-
rijkste aspecten zijn van de AST.

De relatie tussen de AST classificatie en beoordelingen van spraakkwaliteit
door luisteraars is onderzocht in hoofdstuk 6. De resultaten ondersteunen het
gebruik van AST als onderdeel van een ruimere evaluatie van de stem. Hoewel
er een statistisch significant verband tussen de twee maten, levert de AST in
zijn huidige vorm echter slechts in beperkte mate prognostische informatie over
spraakkwaliteit.

Conclusies De resultaten beschreven in dit proefschrift tonen aan dat het
goed mogelijk is om computer-gebaseerd automatische beoordelingen van spraak-
verstaanbaarheid en stemkwaliteit te gebruiken bij sprekers die behandeld zijn
voor hoofd-halskanker en dat computer-gebaseerde automatische beoordelingen
een clinicus bij zijn/haar evaluaties kunnen helpen. Let wel dat deze modellen
niet ontwikkeld zijn met als doel de clinicus te vervangen. De clinicus blijft de
belangrijkste beoordelaar van hoe een spreker praat en klinkt, maar deze com-
putermodellen kunnen gezien worden als een handige, objectieve en accurate
toevoeging aan het oordeel van de expert.





Summary:
Automatic evaluation of voice and

speech intelligibility after treatment of
head and neck cancer

Background Cancer of the head and neck and its medical treatment and
management, can have a negative impact on how a person sounds and talks.
For the speech pathologist, rating a person’s speech intelligibility and voice
quality is an important part of patient management. Rating someone’s speech
or voice, however, can be difficult task to perform objectively as a listener’s
ratings are often inconsistent. Computerized ratings, on the other hand, are
consistent.

This thesis has focused on developing automatic prediction models for
speech intelligibility and voice quality assessment for two groups of speakers
treated for head and neck cancer. The first group discussed in Part I of this
thesis are people with advanced tumours in the head and neck. These people
received a type of non-surgical cancer treatment, called concurrent chemoradio-
therapy (CCRT). This type of treatment can affect a person’s voice and speech.
The second group of people were treated for advanced tumors in the larynx.
These people underwent a total laryngectomy (TL), in which the larynx (also
known as the ’voice box’) is removed. After a TL, speaking is possible with the
aid of a valve that redirects air past vibrating structures in the neck towards the
mouth. This type of speech is called tracheoesophageal speech and it sounds
very different to how a person sounded before the surgery.

Thesis overview The Netherlands Cancer Institute has a large collection of
speech recordings for the two speaker groups reading a short story. These
collections are described in Chapter 2 (CCRT) and Chapter 5 (TL). For every
recording of a person talking, we have asked people to rate the voice quality and
speech intelligibility. In the chapters we present ways to automatically predict
how a person rates the recordings by using different forms of speech technology.
Some of these ways are based on the computer recognising what the speaker
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said in terms of some of the sounds or the characteristics of the sounds or based
on acoustic information.

The computers are able to develop prediction models using information con-
tained in the speech recordings and sometimes by comparing what the computer
’heard’ with what should have been said. In one of the studies we compared the
how well the prediction models performed when there was a mismatch between
the language it was trained to listen to and the language of the speaker. In our
case, if the computer had been trained to analyse Flemish speech recordings
but we gave it Dutch speech recordings. We found that models that want to
match-up what was said with what should have been said, did not perform as
well as models that did not need to compare what it heard to a target text.

In our experiments investigating how we can combine computer information
to create strong models, we found that when the model can access more, and
different types of information, the difference between the computer rating and
the real, listener rating, becomes smaller. Some of the best models performed
at a level similar to an average listener.

In the other chapters we were able to show that similar results could also
be found for predicting ratings of Articulation quality and Accent (see Chapter
4) and could also apply to TL speakers (see Chapter 7). In Chapter 7, we also
found that the performance of the prediction model is close to its maximum
when the speech material is at least 100 syllables long.

Many acoustic measurements correlate, often strongly, with the Acoustic
Signal Typing (AST ) classification of speech from TL patients. However, in
Chapter 5 we find that only two types of acoustic information can can be used to
classify a recording into one of the four ASTs: voice detection using the Voiced
Fraction (VF ) or Maximum Voicing Duration (MVD) and the harmonics-to-
noise ratio (HNR). This indicates that the presence and duration of voice and
the amount of noise are important aspects of AST.

The relationship between listeners’ judgments of AST and judgments of
voice quality were investigated in Chapter 6. The results support the use of
AST as part of a larger evaluation of a person’s voice. Although there is
a statistically significant relationship between the two measures, AST in its
current form provides limited predictive information on voice quality.

Conclusion In short, the results discussed in this thesis showed that computer-
based ratings of speech intelligibility and voice quality for speakers treated for
head and neck cancer is possible and the computer ratings can help a clinician
with his/her evaluations. None of the computer models were created with
the intention of replacing the clinician’s judgment of how a speaker talks and
sounds.



A
Description of recording databases

A.1 Introduction
The individual chapters of this thesis contain meta-data statistics of the patients
and recordings used in these studies. To complete the description of the patient
recordings used in the current thesis, we list an anonymised comprehensive
extract from the corpus meta-data for all the recordings used. In these tables,
patients are identified using a unique 3 letter abbreviation of the 8 letter patient
identifier that has been used throughout the speech corpora.
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A.2 CCRT Speakers and evaluation results

Table A.1: CCRT speaker characteristics and average perceptual scores on 5 point scales. L1: + native, – non-native speaker of Dutch
(perceptual evaluation). Articulation, Intelligibility, Voice, Dialect: average scores (1-5). T0: Pre treatment, T1: 10 weeks, T3: 12 months
after treatment. Note that speaker ANU also had TLE.

Intelligibility Articulation Voice Dialect
ID Sex Age L1 T0 T1 T3 T0 T1 T3 T0 T1 T3 T0 T1 T3

1 0CH M 58 + 4.73 4.54 4.62 4.73 4.54 4.62 4.08 4.12 3.92 4.62 4.62 4.81
2 0EH M 63 + 4.23 4.19 4.46 4.23 4.19 4.46 3.69 2.19 2.54 3.88 3.88 4.15
3 0IH M 51 + 4.73 4.73 4.58 4.73 4.73 4.58 4.38 4.00 4.08 4.88 4.69 4.38
4 0RG M 63 + 4.23 4.08 4.12 4.23 4.08 4.12 3.88 4.00 3.35 3.69 3.50 3.62
5 0SJ M 36 + 2.81 3.23 – 2.81 3.23 – 2.19 1.38 – 4.23 4.46 –
6 182 M 71 – 2.58 2.12 2.46 2.58 2.12 2.46 3.50 3.65 3.58 1.62 1.46 1.76
7 1CX M 64 + 4.38 4.19 4.42 4.38 4.19 4.42 3.92 3.88 4.23 3.96 4.12 4.00
8 1JB F 62 – 3.27 3.08 3.08 3.27 3.08 3.08 4.15 3.77 4.08 2.12 1.81 1.96
9 1PL M 52 + 4.42 – – 4.42 – – 4.15 – – 4.35 – –
10 259 M 54 + 4.62 4.88 4.73 4.62 4.88 4.73 4.04 3.54 3.50 4.54 4.88 4.62
11 28C F 55 + 4.42 – 4.15 4.42 – 4.15 1.46 – 1.65 4.65 – 4.50
12 31P M 63 + 3.54 3.72 3.72 3.54 3.72 3.72 3.50 3.35 3.15 3.38 3.62 3.50
13 31T M 68 + 3.50 – – 3.50 – – 2.58 – – 4.00 – –
14 ANU M 63 + 4.04 4.00 4.04 4.04 4.00 4.04 3.69 3.58 3.27 4.08 4.31 4.23
15 BK0 M 55 + 4.35 4.31 4.46 4.35 4.31 4.46 2.15 3.69 2.27 4.42 4.46 4.50
16 C6R M 44 + 4.04 4.27 4.04 4.04 4.27 4.04 4.38 4.12 3.96 3.77 3.54 3.81
17 CGO M 62 + 2.96 – – 2.96 – – 4.04 – – 4.38 – –
18 CHZ M 53 + 4.62 4.19 4.65 4.62 4.19 4.65 4.69 4.42 4.42 4.65 4.42 4.50

Continued on next page
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Table A.1: CCRT speaker characteristics and average perceptual scores. Continued from previous page

Intelligibility Articulation Voice Dialect
ID Sex Age L1 T0 T1 T3 T0 T1 T3 T0 T1 T3 T0 T1 T3

19 CIP M 50 + 3.69 – – 3.69 – – 4.00 – – 4.42 – –
20 CPO M 60 + 3.38 4.04 3.81 3.38 4.04 3.81 3.81 3.65 3.85 2.96 3.65 3.23
21 DXL M 77 + 4.35 3.88 4.08 4.35 3.88 4.08 3.92 3.85 3.92 4.46 4.12 4.35
22 EJ3 M 60 + 3.73 3.31 – 3.73 3.31 – 4.12 3.81 – 3.88 3.77 –
23 ERE M 50 + 4.42 4.35 – 4.42 4.35 – 3.81 3.54 – 4.19 4.19 –
24 EV0 M 66 + 4.38 4.31 4.42 4.38 4.31 4.42 4.31 4.12 4.23 4.73 4.58 4.54
25 FY0 F 62 + 4.38 3.73 4.15 4.38 3.73 4.15 4.23 4.04 4.19 3.58 3.92 3.69
26 HCZ F 55 + 4.31 3.92 4.08 4.31 3.92 4.08 4.00 3.15 3.42 4.12 4.24 4.42
27 I8P M 58 + 4.62 4.81 4.77 4.62 4.81 4.77 4.58 4.38 4.46 4.31 4.69 4.46
28 K3M M 66 + 4.69 4.58 4.77 4.69 4.58 4.77 4.23 4.31 4.08 4.54 4.69 4.73
29 KZC M 49 – 2.85 3.00 2.81 2.85 3.00 2.81 4.54 4.50 4.62 1.96 2.00 1.96
30 L8U M 62 + 3.27 3.73 4.04 3.27 3.73 4.04 2.38 3.85 3.96 4.15 3.88 3.73
31 MB7 M 79 + 2.96 – – 2.96 – – 4.15 – – 4.42 – –
32 NZB M 53 + 2.12 – – 2.12 – – 3.62 – – 4.69 – –
33 OEL M 78 + 4.46 4.23 – 4.46 4.23 – 4.08 3.46 – 3.69 3.69 –
34 P4U M 57 + 3.85 4.19 4.23 3.85 4.19 4.23 3.23 4.15 4.15 4.50 4.31 4.15
35 PNM M 48 + 4.65 4.65 4.19 4.65 4.65 4.19 3.96 3.88 4.27 4.04 3.88 3.88
36 PTC F 46 – 4.19 4.19 3.92 4.19 4.19 3.92 4.46 4.73 4.62 3.27 3.04 3.15
37 PTO M 73 + 4.46 4.12 4.19 4.46 4.12 4.19 3.96 3.12 3.58 4.12 3.88 4.12
38 R83 M 61 + – 4.42 4.42 – 4.42 4.42 – 4.15 3.96 – 3.85 3.96
39 STF M 57 – 2.50 2.65 – 2.50 2.65 – 4.12 4.50 – 2.12 1.73 –
40 T08 F 75 + 4.50 3.65 4.19 4.50 3.65 4.19 4.35 4.19 4.23 4.12 4.15 3.88

Continued on next page



182
A

ppend
ix

A
Table A.1: CCRT speaker characteristics and average perceptual scores. Continued from previous page

Intelligibility Articulation Voice Dialect
ID Sex Age L1 T0 T1 T3 T0 T1 T3 T0 T1 T3 T0 T1 T3

41 TH6 M 57 + 4.85 4.77 4.54 4.85 4.77 4.54 3.81 3.50 3.38 4.73 4.77 4.77
42 U81 M 52 + 4.27 3.27 4.40 4.27 3.27 4.40 4.19 3.54 3.77 3.85 4.23 3.96
43 UU8 M 60 + 3.96 4.42 4.46 3.96 4.42 4.46 3.92 4.12 4.31 4.35 4.15 4.19
44 UUC F 64 + 3.50 4.15 4.19 3.50 4.15 4.19 3.81 3.85 4.23 4.46 3.92 4.04
45 UX8 M 54 + 4.23 4.23 – 4.23 4.23 – 4.15 4.27 – 3.46 3.42 –
46 V3C M 42 + 4.00 4.31 – 4.00 4.31 – 3.85 4.38 – 3.69 3.58 –
47 VAY F 45 + 3.00 2.69 4.12 3.00 2.69 4.12 4.58 3.62 4.69 4.58 4.62 4.04
48 W8S M 32 – 3.12 3.04 3.12 3.12 3.04 3.12 4.62 4.65 4.54 1.96 1.85 2.23
49 X54 M 51 – 3.46 3.12 3.12 3.46 3.12 3.12 4.31 4.31 3.96 2.85 2.58 3.00
50 X9U M 46 + 3.96 3.62 4.23 3.96 3.62 4.23 4.00 3.88 4.04 4.46 4.38 4.35
51 XFP M 57 + 4.62 4.46 – 4.62 4.46 – 4.27 4.12 – 4.35 3.92 –
52 Y7H M 48 – 2.69 2.65 2.58 2.69 2.65 2.58 3.54 3.62 3.46 1.88 1.92 1.92
53 Y8B F 54 + 2.46 2.96 – 2.46 2.96 – 4.12 4.08 – 4.65 4.69 –
54 YBY F 39 + 4.62 4.58 4.58 4.62 4.58 4.58 4.31 3.92 4.15 4.42 4.54 4.38
55 YKH M 52 + 4.58 4.23 – 4.58 4.23 – 3.62 3.77 – 4.04 3.96 –
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Table A.2: CCRT speaker characteristics and normalized perceptual scores on 5 point scales. L1: + native, – non-native speaker of Dutch
(perceptual evaluation). Articulation, Intelligibility, Voice, Dialect: average scores normalized per listener (Z values). T0: Pre treatment,
T1: 10 weeks, T3: 12 months after treatment. Note that speaker ANU also had TLE.

Intelligibility Articulation Voice Dialect
ID Sex Age L1 T0 T1 T3 T0 T1 T3 T0 T1 T3 T0 T1 T3

1 0CH M 58 + 0.91 0.74 0.70 0.84 0.75 0.81 0.22 0.24 0.04 0.73 0.70 0.92
2 0EH M 63 + 0.42 -0.31 -0.01 0.37 0.29 0.64 -0.19 -1.88 -1.49 -0.01 0.11 0.25
3 0IH M 51 + 0.77 0.91 0.83 0.84 0.90 0.69 0.62 0.17 0.27 0.98 0.82 0.49
4 0RG M 63 + 0.46 0.04 0.12 0.31 0.17 0.21 0.04 0.19 -0.6 -0.06 -0.36 -0.24
5 0SJ M 36 + -1.51 -2.25 – -1.2 -0.65 – -2.00 -2.82 – 0.34 0.67 –
6 182 M 71 – -1.78 -2.39 -1.96 -1.56 -2.04 -1.67 -0.37 -0.2 -0.39 -2.08 -2.26 -1.98
7 1CX M 64 + 0.68 0.50 0.56 0.40 0.26 0.55 0.05 -0.03 0.41 0.17 0.26 0.05
8 1JB F 62 – -0.82 -0.82 -0.76 -0.79 -0.91 -0.89 0.39 -0.17 0.18 -1.78 -1.91 -1.8
9 1PL M 52 + 0.69 – – 0.57 – – 0.18 – – 0.47 – –
10 259 M 54 + 0.76 0.66 0.65 0.69 1.01 0.80 0.20 -0.36 -0.43 0.63 0.97 0.72
11 28C F 55 + -0.81 -2.31 -0.46 0.62 -0.56 0.34 -2.74 -3.06 -2.51 0.72 0.69 0.59
12 31P M 63 + -0.3 -0.28 -0.17 -0.46 -0.23 -0.21 -0.55 -0.68 -0.85 -0.42 -0.21 -0.31
13 31T M 68 + -0.55 – – -0.51 – – -1.46 – – 0.10 – –
14 ANU M 63 + 0.22 0.30 0.12 0.26 0.10 0.18 -0.2 -0.3 -0.8 0.32 0.42 0.39
15 BK0 M 55 + -0.16 0.41 -0.16 0.50 0.44 0.57 -1.94 -0.22 -1.72 0.51 0.58 0.58
16 C6R M 44 + 0.17 0.42 0.35 0.09 0.37 0.12 0.66 0.25 0.15 -0.09 -0.27 -0.06
17 CGO M 62 + -0.21 – – -0.99 – – 0.22 – – 0.52 – –
18 CHZ M 53 + 0.80 0.41 0.75 0.70 0.26 0.68 0.89 0.70 0.67 0.83 0.59 0.68
19 CIP M 50 + -0.11 – – -0.26 – – 0.18 – – 0.57 – –
20 CPO M 60 + -0.51 0.06 -0.01 -0.55 0.10 -0.08 -0.07 -0.18 0.06 -0.82 -0.15 -0.45

Continued on next page
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Table A.2: CCRT speaker characteristics and normalized perceptual scores. Continued from previous page

Intelligibility Articulation Voice Dialect
ID Sex Age L1 T0 T1 T3 T0 T1 T3 T0 T1 T3 T0 T1 T3

21 DXL M 77 + 0.24 -0.18 0.23 0.50 -0.03 0.21 0.09 -0.03 0.09 0.54 0.27 0.44
22 EJ3 M 60 + 0.10 -0.37 – -0.17 -0.71 – 0.35 0.02 – 0.09 -0.08 –
23 ERE M 50 + 0.50 0.36 – 0.57 0.53 – -0.03 -0.38 – 0.34 0.33 –
24 EV0 M 66 + 0.78 0.61 0.60 0.55 0.40 0.53 0.49 0.24 0.44 0.81 0.68 0.66
25 FY0 F 62 + 0.49 -0.05 0.24 0.47 -0.25 0.29 0.47 0.32 0.42 -0.28 0.00 -0.12
26 HCZ F 55 + 0.61 -0.05 0.30 0.48 0.10 0.16 0.18 -0.84 -0.46 0.27 0.33 0.49
27 I8P M 58 + 0.90 0.99 0.94 0.72 0.98 0.83 0.85 0.62 0.72 0.40 0.74 0.47
28 K3M M 66 + 0.86 0.83 0.93 0.84 0.72 0.94 0.50 0.53 0.27 0.70 0.79 0.85
29 KZC M 49 – -1.22 -1.16 -1.18 -1.17 -1.05 -1.31 0.78 0.72 0.86 -1.76 -1.67 -1.79
30 L8U M 62 + -0.82 -0.04 0.16 -0.76 -0.02 0.18 -1.77 0.03 0.13 0.26 0.09 -0.08
31 MB7 M 79 + -0.73 – – -1.08 – – 0.40 – – 0.55 – –
32 NZB M 53 + -1.66 – – -1.77 – – -0.24 – – 0.86 – –
33 OEL M 78 + 0.45 0.17 – 0.55 0.35 – 0.22 -0.59 – -0.17 -0.08 –
34 P4U M 57 + -0.04 0.59 0.59 0.00 0.35 0.42 -0.63 0.40 0.36 0.64 0.46 0.36
35 PNM M 48 + 0.62 0.26 0.49 0.72 0.77 0.35 0.17 0.04 0.51 0.21 0.04 0.00
36 PTC F 46 – 0.28 0.29 0.28 0.31 0.33 0.04 0.72 1.02 0.91 -0.56 -0.74 -0.64
37 PTO M 73 + 0.58 0.23 0.38 0.62 0.25 0.34 0.06 -0.84 -0.32 0.31 0.03 0.33
38 R83 M 61 + – 0.56 0.56 – 0.55 0.59 – 0.40 0.16 – 0.06 0.13
39 STF M 57 – -2.17 -1.72 – -1.79 -1.46 – 0.31 0.76 – -1.76 -2.00 –
40 T08 F 75 + 0.62 0.01 0.37 0.72 -0.35 0.36 0.57 0.37 0.48 0.30 0.39 0.04
41 TH6 M 57 + 0.95 0.75 0.71 1.05 1.02 0.75 -0.12 -0.45 -0.53 0.85 0.83 0.89
42 U81 M 52 + 0.49 -0.24 0.29 0.44 -0.74 0.50 0.37 -0.37 -0.15 -0.01 0.46 0.15

Continued on next page
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Table A.2: CCRT speaker characteristics and normalized perceptual scores. Continued from previous page

Intelligibility Articulation Voice Dialect
ID Sex Age L1 T0 T1 T3 T0 T1 T3 T0 T1 T3 T0 T1 T3

43 UU8 M 60 + 0.45 0.63 0.70 0.09 0.60 0.65 0.08 0.33 0.56 0.44 0.37 0.33
44 UUC F 64 + -0.26 0.47 0.44 -0.51 0.21 0.25 -0.04 -0.02 0.42 0.49 0.13 0.28
45 UX8 M 54 + 0.22 0.36 – 0.31 0.32 – 0.48 0.44 – -0.34 -0.46 –
46 V3C M 42 + 0.27 0.45 – 0.22 0.38 – -0.02 0.62 – -0.07 -0.23 –
47 VAY F 45 + -0.19 -0.65 0.30 -0.99 -1.36 0.10 0.81 -0.26 0.98 0.70 0.72 0.28
48 W8S M 32 – -0.88 -0.89 -0.9 -0.85 -1.00 -0.87 0.88 0.90 0.78 -1.75 -1.89 -1.57
49 X54 M 51 – -0.46 -0.65 -0.65 -0.52 -0.82 -0.92 0.51 0.48 0.11 -0.99 -1.15 -0.85
50 X9U M 46 + 0.04 0.06 0.46 0.02 -0.31 0.32 0.12 0.01 0.26 0.63 0.54 0.50
51 XFP M 57 + 0.67 0.59 – 0.74 0.59 – 0.52 0.30 – 0.51 0.10 –
52 Y7H M 48 – -1.42 -1.38 -1.74 -1.39 -1.45 -1.55 -0.34 -0.25 -0.41 -1.84 -1.75 -1.79
53 Y8B F 54 + -1.07 -0.51 – -1.59 -0.96 – 0.31 0.27 – 0.76 0.76 –
54 YBY F 39 + 0.86 0.70 0.38 0.70 0.71 0.72 0.53 0.01 0.35 0.55 0.66 0.42
55 YKH M 52 + 0.62 0.38 – 0.70 0.33 – -0.26 -0.06 – 0.19 0.10 –
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A.3 TE Speakers and evaluation results

Table A.3: Tracheoesophageal (TE) speakers and perceptual consensus scores. Age
- Age at laryngectomy; Age(2) - Age at recording; * - Age at recording ± 1 year;
Chapter - Chapter in this thesis where data were used; AST - Acoustic Signal
Typing; VQ - Voice quality; Int - IINFVo Intelligibility rating; Imp - IINFVo
Impression rating. AST is on a 4 point scale, the others are VAS ratings converted
to a 1000 point scale. Speakers not used in studies did not complete the recordings
as planned or there were technical difficulties with the recordings. Note that speaker
ANU also had CCRT.

ID Sex Age Age(2) Chapter AST VQ Int Imp
1 02R M 73 79⇤ 5,6,7 2 796 939 882
2 0EO M 64 64 5,6,7 4 617 695 640
3 0T3 M 62 62 – – – – –
4 123 M 72 76⇤ 5,6,7 2 435 631 564
5 1BX F 49 56 5,6,7 2 668 798 680
6 23K M 66 75⇤ 5,6,7 3 500 555 569
7 2B0 M 58 61 5,6,7 2 664 665 652
8 33Q M 71 71 5,6,7 4 128 749 580
9 3E6 M 41 41 5,6,7 2 424 385 355
10 A58 M 51 52 – – – – –
11 A6P M 44 54⇤ 5,6,7 2 506 675 448
12 ANU M 50 68⇤ 5,6,7 3 36.5 568 250
13 AU0 M 64 66 5,6,7 2 598 640 395
14 B23 M 44 45 – – – – –
15 B2N M 62 72⇤ 5,6,7 4 197 600 397
16 B85 M 46 50⇤ 5,6,7 2 511 702 500
17 BI1 F 71 73 5,6,7 4 98.5 655 330
18 BOG M 62 69 5,6,7 4 42.5 530 425
19 BPN M 75 75 – – – – –
20 BQK M 51 52⇤ 5,6,7 4 247 765 452
21 BTB M 52 57⇤ 5,6,7 3 430 680 650
22 C0V M 78 81 5,6,7 3 376 360 215
23 C1K M 46 48 5,6,7 2 935 351 399
24 C1S M 50 55⇤ 5,6,7 3 129 500 400
25 CTH M 69 70 – – – – –
26 D0U M 66 76 5,6,7 2 401 701 400
27 DCA M 73 67 – – – – –
28 DCB M 69 72 5,6,7 2 616 598 402
29 DM8 F 59 61 5,6,7 1 599 790 600
30 EIQ M 51 67⇤ 5,6,7 3 614 755 608
31 EUZ M 52 56⇤ 5,6,7 2 572 751 600
32 F6Z M 51 75⇤ 5 2 427.5 – –

Continued on next page
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Table A.3: Tracheoesophageal (TE) speakers and perceptual consensus scores.
Continued from previous page

ID Sex Age Age(2) Chapter AST VQ Int Imp
33 FC1 M 75 77⇤ 5,6,7 3 547 600 485
34 FKW M 60 60 5,6,7 2 112.5 680 571
35 GNB M 72 74⇤ 5,6,7 3 472 685 561
36 H2N F 75 77 5,6 2 199 125 70
37 HC3 F 66 76 5,6,7 1 401 630 520
38 HHV F 54 62 5,6,7 2 352 585 386
39 HNB M 78 80⇤ 5,6,7 3 24 625 418
40 I0F F 62 70 5 2 601 – –
41 IHF F 63 64 5,6,7 2 400 751 749
42 IZ9 M 54 57 5,6,7 1 616 580 552
43 J73 F 53 66 5,6,7 2 365 751 465
44 J8W F 54 61 5,6,7 4 26 254 140
45 JTZ M 50 59⇤ 5,6,7 2 575 749 750
46 K2J M 45 46 5,6,7 2 495 725 490
47 K9S M 59 80⇤ 5,6,7 1 911 655 751
48 KF0 M 67 70⇤ 5,6 2 799 214 399
49 KRH M 44 64⇤ 5,6,7 2 964 702 580
50 L5Y M 54 66 5,6,7 1 748 690 490
51 LBD F 53 56 5,6,7 2 538 682 551
52 LIW F 44 48 5,6,7 4 120.5 435 114
53 LMN M 56 61 5,6,7 2 574 715 750
54 LR1 M 59 66 5,6,7 3 561 625 420
55 LS2 M 67 70 5,6,7 2 216 660 440
56 M4I M 57 75 5,6,7 1 800 655 580
57 M5J M 68 70 – – – – –
58 M6S M 63 71 5,6,7 1 547 700 515
59 M8D M 45 46 5,6,7 2 931 805 751
60 MHQ M 71 72 5,6,7 2 199 450 515
61 MLF M 72 72 5,6,7 2 887 501 499
62 MNE M 69 78⇤ 5,6,7 1 446.5 595 450
63 MUI F 49 49 5,6,7 3 151 809 651
64 N00 M 41 41⇤ 5,6,7 1 689.5 692 623
65 N5H M 61 85⇤ 5,6,7 2 291.5 695 530
66 N7Y M 57 68 5,6,7 3 529 452 280
67 NPJ M 53 55 5,6,7 1 751 675 645
68 O08 M 85 87⇤ 5,6,7 2 830 801 702
69 PU1 M 58 75 6 – – 730 698
70 Q9V M 44 58⇤ 5,6,7 1 671 730 451
71 QKM M 72 72 5,6,7 2 915 500 400
72 QPR M 52 56 5,6,7 1 909.5 782 662

Continued on next page
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Table A.3: Tracheoesophageal (TE) speakers and perceptual consensus scores.
Continued from previous page

ID Sex Age Age(2) Chapter AST VQ Int Imp
73 QXM M 44 55⇤ 5,6,7 1 543.5 350 551
74 R49 M 60 67⇤ 5,6,7 4 146 565 348
75 RX1 M 67 69 5,6,7 4 301 731 452
76 SAB M 73 81⇤ 5,6,7 4 501 685 585
77 SOZ M 82 84⇤ 5,6,7 2 549 715 549
78 SS6 M 56 56 5,6,7 4 224 605 320
79 T9B M 45 48⇤ 5,6,7 2 532 727 681
80 TLO M 62 67 – – – – –
81 TMF M 59 60 5,6,7 2 783.5 801 698
82 UCX M 46 47⇤ 5,6 4 315 100 350
83 USG M 45 54 5,6,7 2 398 902 902
84 VEH M 56 59⇤ 5,6,7 2 625 655 410
85 VH8 M 57 71 5,6,7 4 201 550 201
86 VNR M 48 51⇤ 5,6,7 4 476.5 598 420
87 W7I M 45 47⇤ 5 2 503 – –
88 WJ2 M 55 64⇤ 5,6,7 3 401 650 551
89 WNV M 74 81 – – – – –
90 WSY M 75 77 5,6,7 2 452 585 395
91 WWL M 74 75 5,6,7 2 860 749 751
92 YCF M 70 73 5,6,7 2 299 350 209
93 YCL M 64 65 5,6,7 4 140 705 451
94 Z6J M 51 66 5,6,7 1 899.5 630 600
95 ZK9 M 53 53 5,6,7 4 300 610 470
96 ZOU M 46 46 5,6,7 2 708 799 652
97 ZQ1 M 56 59⇤ 5,6,7 2 644 848 801


