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CANONICAL CORRELATION ANALYSIS

David Weenink

Abstract

We discuss algorithms for performing canonical correlation analysis. In canonical corre-
lation analysis we try to find correlations between two data sets. The canonical correlation
coefficients can be calculated directly from the two data sets or from (reduced) representa-
tions such as the covariance matrices. The algorithms for both representations are based on
singular value decomposition. The methods described here have been implemented in the
speech analysis programPRAAT (Boersma & Weenink, 1996), and some examples will be
demonstated for formant frequency and formant level data from 50 male Dutch speakers
as were reported by Pols et al. (1973).

1 Introduction

Let X be a data matrix of dimensionm × n which containsm representations of an
n-dimensional vector of random variablesx. The correlation coefficientρij that shows
the correlation between the variablesxi andxj is defined as

ρij =
Σij√
ΣiiΣjj

, (1)

where the numberΣij denotes the covariance betweenxi andxj which is defined as

Σij =
1

m − 1

m∑
k=1

(Xki − µi)(Xkj − µj), (2)

whereµi is xi’s average value. The matrixΣ is called the covariance matrix. FromX
we construct the data matrixAx by centering the columns ofX, i.e., the elements ofAx,
theaij, areaij = Xij − µj. We can now rewrite the covariance matrix as

Σ =
1

m − 1
A ′

xAx, (3)

whereA ′
x denotes the transpose ofAx.

Note that the correlation coefficient only provides a measure of thelinear associa-
tion between the two variables: when the two variables are uncorrelated, i.e., when their
correlation coefficient is zero, this only means that no linear function describes their re-
lationship. A quadratic relationship or some other non-linear relationship is certainly
not ruled out.

Equation (1) shows us the recipe to determine the correlation matrix from the co-
variance matrix. However, the correlations in the correlation matrix depend very much
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on the coordinate system that we happen to use. We could rotate the coordinate system
in such a way that the projections in the new coordinate system are maximally uncor-
related and this is exactly what a principal component analysis does achieve: the cor-
relation matrix obtained from the principal components would be the identity matrix,
showing only zeros with ones on the diagonal. While each element in the correlation
matrix captures the correlation between two variables, the object of canonical corre-
lation analysis is to capture the correlations between twosetsof variables. Canonical
correlation analysis tries to find basis vectors for two sets of multidimensional vari-
ables such that the linear correlations between the projections onto these basis vectors
are mutually maximized. In the limit when the dimension of each set is 1, the canonical
correlation coefficient reduces to the correlation coefficient.

We will need this type of analysis when we want to find relations between different
representations of the same objects. In here we will demonstrate its usefulness by show-
ing, for example, the correlations between principal components and auto-associative
neural nets for vowel data.

2 Mathematical background

Canonical correlation analysis originates in Hotelling (1936) and the two equations that
govern the analysis are the following:

(Σ′
xyΣ

−1
xxΣxy − ρ2Σyy)y = 0 (4)

(ΣxyΣ−1
yyΣ

′
xy − ρ2Σxx)x = 0, (5)

whereΣ′
xy denotes the transpose ofΣxy. Both equations look similar and have, in fact,

the same eigenvalues. And, given the eigenvectors for one of these equations, we can
deduce the eigenvectors for the other as will be shown in the next section.

2.1 Derivation of the canonical correlation analysis equations

In canonical correlation analysis we want to maximize correlations between objects
that are represented with two data sets. Let these data sets beAx andAy, of dimensions
m×n andm×p, respectively. Sometimes the data inAy andAx are called thedependent
and theindependentdata, respectively. The maximum number of correlations that we
can find is then equal to the minimum of the column dimensionsn andp. Let the
directions of optimal correlations for theAx andAy data sets be given by the vectors
x andy, respectively. When we project our data on these direction vectors, we obtain
two new vectorszx andzy, defined as follows:

zx = Axx (6)
zy = Ayy. (7)

The variableszy andzx are called thescoresor thecanonical variates. The correlation
between the scoreszy andzx is then given by:

ρ =
z′y · zx√

z′y · zy
√

z′x · zx
. (8)

Our problem is now finding the directionsy andx that maximize equation (8) above.
We first note thatρ is not affected by a rescaling ofzy or zx, i.e., a multiplication of
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zy by the scalarα does not change the value ofρ in equation (8). Since the choice of
rescaling is arbitrary, we therefor maximize equation (8) subject to the constraints

z′x · zx = x′A ′
xAxx = x′Σxxx = 1 (9)

z′y · zy = y′A ′
yAyy = y′Σyyy = 1. (10)

We have made the substitutionsΣyy = A ′
yAy andΣxx = A ′

xAx, where theΣ’s are co-
variance matrices (the scaling factor to get the covariance matrix, 1/(m−1), can be left
out without having any influence on the result). When we also substituteΣyx = A ′

yAx

we use the two constraints above and write the maximization problem in Lagrangian
form:

L(ρx, ρy, x, y) = y′Σyxx −
ρx

2

(
x′Σxxx − 1

)
−

ρy

2

(
y′Σyyy − 1

)
, (11)

We can solve equation (11) by first taking derivatives with respect toy andx:

∂L

∂x
= Σxyy − ρxΣxxx = 0 (12)

∂L

∂y
= Σyxx − ρyΣyyy = 0. (13)

Now subtractx′ times the first equation fromy′ times the second and we have

0 = y′Σyxx − ρyy′Σyyy − x′Σxyy + ρxx′Σxxx
= ρxx′Σxxx − ρyy′Σyyy.

Together with the constraints of equations (9) and (10) we must conclude thatρx =
ρy = ρ. WhenΣxx is invertible we get from (12)

x =
Σ−1

xxΣxyy

ρ
. (14)

Substitution in (13) gives after rearranging essentially equation (4):

(ΣyxΣ−1
xxΣxy − ρ2Σyy)y = 0. (15)

In an analogous way we can get the equation for the vectorsx as:

(ΣxyΣ−1
yyΣyx − ρ2Σxx)x = 0. (16)

Because the matricesΣxy andΣyx are each other’s transpose we write the canonical
correlation analysis equations as follows

(Σ′
xyΣ

−1
xxΣxy − ρ2Σyy)y = 0 (17)

(ΣxyΣ−1
yyΣ

′
xy − ρ2Σxx)x = 0. (18)

We can now easily see that in the one-dimensional case both equations reduce to a
squared form of equation (1). The equations (17) and (18) are so called generalized
eigenvalue problems. Special software is needed to solve these equations in a numeri-
cally stable and robust manner. In the next section we will discuss two methods to solve
these equations. Both methods have been implementend in thePRAAT program.
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2.2 Solution of the canonical correlation analysis equations

We can consider two cases here: the simple case when we only have the covariance
matrices, or, the somewhat more involved case, when we have the original data matrices
at our disposal.

2.2.1 Solution from covariance matrices

We will start with the simple case and solve equations (17) and (18) when we have
the covariance matricesΣxx, Σxy andΣyy at our disposal. We will solve one equation
and show that the solution for the second equation can be calculated from it. Provided
Σyy is not singular, a simpler looking equation can be obtained by multiplying equation
(17) from the left byΣ−1

yy :

(Σ−1
yyΣ

′
xyΣ

−1
xxΣxy − ρ2)y = 0. (19)

This equation can be solved in two steps. First we perform the two matrix inversions
and the three matrix multiplications. In the second step we solve for the eigenvalues
and eigenvectors of the resulting general square matrix. From the standpoint of numer-
ical precision, actually performing the matrix inversions and multiplications, would be
a very unwise thing to do because with every matrix multiplication we loose numeri-
cal precision. Instead of solving equation (17) with the method described above, we
will rewrite this generalizedeigenvalueproblem as a generalizedsingular valueprob-
lem. To accomplish this we will need the Cholesky factorization of the two symmetric
matricesΣxx andΣyy.

The Cholesky factorization can be performed on symmetric positive definite matri-
ces, like covariance matrices, and is numerically very stable (Golub & van Loan, 1996).
Here we factor the covariance matrices as follows

Σyy = U′
yUy

Σxx = U′
xUx,

whereUy andUx are upper triangular matrices with positive diagonal entries. LetK be
the inverse ofUx, then we can write

Σ−1
xx = KK ′. (20)

We substitute this in equation (17) and rewrite as

((K ′Σxy)′(K ′Σxy) − ρ2U′
yUy)y = 0. (21)

This equation is of the form (A ′A − ρB′B)x = 0 which can be solved by a numerically
very stable generalized singular value decomposition ofA andB, without actually per-
forming the matrix multiplicationsA ′A andB′B (Golub & van Loan, 1996; Weenink,
1999). We have obtained this equation by only one matrix multiplication, two Cholesky
decompositions and one matrix inversion. This allows for a better estimation of the
eigenvalues than estimating them from equation (19). The square roots of the eigen-
values of equation (21) are the canonical correlation coefficientsρ. The eigenvectorsy
tell us how to combine the columns ofAy to get this optimum canonical correlation.

We will now show that the eigenvalues of equations (17) and (18) are equal and
that the eigenvectors for the latter can be obtained from the eigenvectors of the former.
We first multiply (17) from the left byΣxyΣ−1

yy and obtain

(ΣxyΣ−1
yyΣ

′
xyΣxxΣxy − ρ2Σxy)y = 0,
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which can be rewritten by inserting the identity matrixΣxxΣ−1
xx as

(ΣxyΣ−1
yyΣ

′
xyΣ

−1
xxΣxy − ρ2ΣxxΣ−1

xxΣxy)y = 0.

Finally we split off the commonΣ−1
xxΣxy part on the right and obtain

(ΣxyΣ−1
yyΣ

′
xy − ρ2Σxx)Σ−1

xxΣxyy = 0. (22)

We have now obtained equation (18). This shows that the eigenvalues of equations
(17) and (18) are equal and that the eigenvectorsx for equation (18) can be obtained
from the eigenvectorsy of equation (17) asx = Σ−1

xxΣxyy. This relation between the
eigenvectors was already explicit in equation (14).

2.2.2 Solution from data matrices

When we have the data matricesAx andAy at our disposal we do not need to calculate
the covariance matricesΣxx = A ′Ax, Σyy = A ′

yAy andΣxy = A ′
xAy from them.

Numerically spoken, there are better ways to solve equations (4) and (5). We will start
with the singular value decompositions

Ax = UxDxV ′
x (23)

Ay = UyDyV ′
y (24)

and use them to obtain the following covariance matrices

Σxx = A ′
xAx = VxD2

xV
′
x

Σyy = A ′
yAy = VyD2

yV
′
y

Σxy = A ′
xAy = VxDxU′

xUyDyV ′
y. (25)

We use these decompositions together withΣ−1
xx = VxD−2

x V ′
x to rewrite equation (4) as

(VyDyU′
yUxU′

xUyDyV ′
y − ρ2VyD2

yV
′
y)y = 0, (26)

where we used the orthogonalitiesV ′
xVx = I andV ′

yVy = I . Next we multiply from the
left with D−1

y V ′
y and obtain

(U′
yUxU′

xUyDyV ′
y − ρ2DyV ′

y)y = 0, (27)

which can be rewritten as

((U′
xUy)′(U′

xUy) − ρ2I )DyV ′
yy = 0. (28)

This equation is of the form (A ′A − ρI )x = 0 which can be easily solved by the sub-
stitution of the singular value decomposition (svd) ofA. The svd ofU′

xUy = UDV ′

substituted in equation (28) leaves us after some rearrangement with

(D2 − ρ2I )V ′DyV ′
yy = 0. (29)

This equation has eigenvaluesD2 and the eigenvectors can be obtained from the columns
of VyD−1

y V. In an analogous way we can reduce equation (5) to

(D2 − ρ2I )U′DxV ′
xx = 0, (30)
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with the same eigenvaluesD2. Analogously, the eigenvectors are obtained from the
columns ofVxD−1

x U.
We now have shown that the algorithms above significantly reduce the number of

matrix multiplications that are necessary to obtain the eigenvalues. First of all we do not
actually need to perform the matrix multiplications to obtain the covariance matrices
in equations (25). We only need two singular value decompositions and one matrix
multiplicationU′

xUy. The latter multiplication is numerically very stable because both
matrices are column orthogonal.

2.2.3 Solution summary

We have shown two numerically stable procedures to solve the canonical correlation
equations (4) and (5). In both procedures the data matricesAx andAy were considered
as two separate matrices. The same description can be given if we use thecombined
m × (p + n) data matrixAy+x. In this matrix the firstp columns equalAy and the next
n columns equalAx. Its covariance matrix can be decomposed as:

Σy+x = A ′
y+xAy+x =

(
Σyy Σyx

Σxy Σxx

)
.

The problem has now been reformulated as obtaining correlations between two groups
of variables within thesamedata set. This formulation has been adopted in thePRAAT

program.

3 A canonical correlation analysis example

As an example we will use the data set of Pols et al. (1973) which contains the first three
formant frequency values and levels from the 12 Dutch monophthong vowels as spoken
in /h_t/ context by 50 male speakers. This data set is available as aTableOfReal -
object in thePRAAT program: the first three columns in the table contain the frequencies
of the first three formants in Hertz and the next three columns contain the levels of the
formants in decibel below the overall sound pressure level (SPL) of the measured vowel
segment. There are 600= 50× 12 rows in this table. Because the levels are all given
as positive numbers, a small number means a relatively high peak, a large number a
relatively small peak. To get an impression of this data set we have plotted in figure 1
the logarithmically transformed and standardized first and second formant against each
other. In the next subsection more details about the transformation will be given.

3.1 Finding correlations between formant frequencies and levels

We will try to find the canonical correlation between the three formant frequency values
and the three levels. Instead of the frequency values in Hertz we will use logarithmic
values and standardize all columns1 (for each column separately: subtract the column
average and divide by the standard deviation). Before we start the canonical correlation
analysis we will first have a look at thePearsoncorrelations within this data set. This
correlation matrix is displayed in the lower triangular part of table 1. In the upper
triangular part are displayed the correlations for the linear frequency scale in Hertz.

1The standardization is, strictly speaking, not necessary because correlation coefficients are invariant
under standardization.
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Fig. 1. The logarithmically transformed first and second formant frequencies of the Pols
et al. (1973) data set.

We clearly see from the table that the correlation pattern in the upper triangular part
follows the pattern from the lower triangular part for the logarithmically transformed
frequencies. To get an impression of the variability of these correlations, we have
displayed in table 2 the confidence intervals at a confidence level of 0.95. We used
Ruben’s approximation for the calculation of the confidence intervals and applied a
Bonferroni correction for the significance level (Johnson, 1998). Script 1 summarizes2.

Create TableOfReal (Pols 1973)... yes . F1,2,3 (Hz) and levelsL1,2,3.
Formula... if col < 4 then log10(self) else self endif . To log(F1,2,3).
Standardize columns
To Correlation
Confidence intervals... 0.95 0 Ruben . Bonferroni correction.

Script 1: Calculating correlations and confidence intervals.

The lower triangular part of table 1 in which the correlations of the logarithmically
transformed formant frequency values are displayed, shows exact agreement with the
lower part of table III in Pols et al. (1973). The correlation matrix shows that high
correlations exist between some formant frequencies and some levels. According to
the source-filter model of speech production vowel spectra have approximately a decli-

2In this script and the following ones, the essentialPRAAT commands aredisplayed in another type
family. Text that starts with a.-symbol is comment and not part of the script language. Note that these
scripts only summarize the most important parts of the analyses. Complete scripts that reproduce all
analyses, drawings and tables in this paper, can be obtained from the author’s websitehttp://www.
fon.hum.uva.nl/david/ .
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Table 1. Correlation coefficients for the Pols et al. (1973) data set. The entries in the lower
triangular part are the correlations for the logarithmically transformed frequency values
while the entries in the upper part are the correlations for frequency values in Hertz. For
better visual separability the diagonal values, which are all 1, have been left out.

F1 F2 F3 L1 L2 L3

log(F1) −0.338 0.191 0.384 −0.507 −0.014
log(F2) −0.302 0.190 −0.106 0.530 −0.568
log(F3) 0.195 0.120 0.113 −0.036 0.019
L1 0.370 −0.090 0.116 −0.042 0.085
L2 −0.533 0.512 −0.044 −0.042 0.127
L3 −0.021 −0.605 0.017 0.085 0.127

Table 2. Confidence intervals at a 0.95 confidence level of the correlation coefficients in
the lower triangular part of table 1. Confidence intervals were determined by applying
Ruben’s approximation and a Bonferroni correction was applied to the confidence level.
The upper and lower triangular part display the upper and lower value of the confidence
interval, respectively. For example, the confidence interval for the−0.533 correlation
betweenL2 and log(F1) is (−0.614,−0.442).

log(F1) log(F2) log(F3) L1 L2 L3

log(F1) −0.189 0.307 0.469 −0.442 0.099
log(F2) −0.407 0.236 0.030 0.595−0.522
log(F3) 0.077 0.001 0.232 0.076 0.136
L1 0.262 −0.207 −0.004 0.078 0.203
L2 −0.614 0.417 −0.162 −0.161 0.243
L3 −0.140 −0.675 −0.103 −0.035 0.007

nation of−6 dB/octave which indicates that a strong linear correlation between the
logarithm of the formant frequency and the formant level in decibel should exist.

To obtain the canonical correlations between the formant frequencies and formant
levels we first let thePRAAT program construct aCCA-object from theTableOfReal -
object. This object will next be queried for the canonical correlations. In the construc-
tion of theCCA-object, the first three columns in theTableOfReal -object, those that
contain the formant frequencies, are associated with the matrixAy, and the last three
columns that contain the formant levels are associated with the matrixAx. Then, the
calculations as outlined in section 2.2.2 are used to determine the canonical correla-
tions. Script 2 summarizes.

select TableOfReal pols_50males . The log(F ) values.
To CCA... 3 . We have 3 dependent variables.
Get correlation... 1
Get correlation... 2
Get correlation... 3

Script 2: Canonical correlation analysis.

In table 3 we show the canonical correlations together with the eigenvector load-
ings on the variables. The eigenvectors belonging to the first and the second canonical
correlation have also been drawn in figure 2 with a continous line and a dotted line,
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Table 3. The canonical correlations between formant frequencies and formant levels and
their corresponding eigenvectors.

ρ log(F1) log(F2) log(F3) L1 L2 L3

1 0.867 −0.187 0.971 −0.148 −0.092 0.714 −0.694
2 0.545 0.891 0.443 −0.099 0.646 −0.428 −0.632
3 0.072 0.166 0.017 −0.986 −0.788 −0.530 −0.313

log(F1) log(F2) log(F3)

0

–1

1

L1 L2 L3

0

–1

1

Fig. 2. The eigenvectors corresponding to the first (continuous line) and the second canon-
ical correlation(dotted line).

respectively. In this figure the plot on the left shows the weighting of the frequencies.
We see that, for the first eigenvector, most of the weight is put on log(F2), and that
the other two frequencies are barely weighted. On the other hand, for the weighting
of the levels, the first eigenvector shows approximately equal weighting of the second
and third level (in absolute sense). This is confirmed by the data in table 1 that show
a high correlation, 0.512, between log(F2) andL2 and the highest correlation, 0.605,
between log(F2) andL3. Table 3 indicates that the weightings ofL2 andL3 in the first
eigenvector are even larger than in table 1.

3.2 Using the correlations for prediction

The outcome of the canonical correlation analysis on the Pols et al. data set was three
canonical correlations,ρi, with their associated eigenvectorsxi andyi. These eigenvec-
tors can be used to construct the scores (canonical variates)zy andzx as was shown in
equations (7) and (6), respectively. In figure 3 we have drawn a scatter plot of the first
canonical variates. The straight line shows the empirical relationy1 = 0.867x1 for the
first canonical correlation. We note two separate clusters, one for the back vowels and
another for the front vowels. The main ordering principle in the figure is from front to
back, as can also be seen from the first eigenvector for the formants in figure 2 which
is dominated by the second formant frequency. The linear part of the relation between
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Fig. 3. A scatter plot of the first canonical variates. The straight line shows the canonical
correlation relationy1 = ρ1x1, whereρ1 = 0.867.

these canonical variables can be exploited by predicting one from the other. In the fol-
lowing we will try to predict formant frequency values from formant levels. We start
with the equations for the canonical variates and write:

zy,i = ρizx,i, for i = 1,2 and 3. (31)

These three equations show the optimal linear relation between a linear combination of
formant frequencies and formant levels, thezy and thezx, respectively. Equation (31)
could also be interpreted as a prescription to determine thezy’s when only thezx’s are
given. In the equation above the vectorsz arem-dimensional. For every elementj
of the vectorsz, we can substitute back the original variables and obtain the following
equation

Yf = D(ρi)Xl , (32)

wheref andl are the vectors with the three formant frequencies and levels, respectively,
andD(ρi) is a diagonal matrix. TheY andX are the eigenvectors. Now, because theY
are orthogonal, we can write the solution as

f = Y ′D(ρi)Xl . (33)

When we train a discriminant classifier with the standardized formant frequency
values and use the same set we used for the training as input for the classifier we obtain
73.9% correct classification with the 12-label set (discriminant analysis with thePRAAT

program has been covered in Weenink (1999)). When we use the formantlevelsto pre-
dict the formantfrequenciesand subsequently use these predicted formant frequencies
as input to the classifier, we get 26% correct classification. Using only formant lev-
els for discriminant classification gives 37.2% correct. Both classifications are above
chance (8.5%). The following script summarizes.
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select TableOfReal pols_50males
plus CCA pols_50males
Predict... 4 . Start column is 4.
Select columns where row... "1 2 3" 1 . Select onlyF1, F2, F3.
Rename... f123
To Discriminant . Train the classifier.
plus TableOfReal f123
To ClassificationTable... y y . Use linear discriminant.
To Confusion . Get the confusion matrix.
fc = Get fraction correct

Script 3: Prediction from canonical correlations.

4 Principal components and auto-associative neural nets

4.1 Introduction

In this section we try to use canonical correlation analysis to demonstrate that appro-
priately chosen neural nets can also perform principal component analysis. We will do
so by comparing the output from an auto-associative neural net with the output of a
principal component analysis by means of canonical correlation analysis. As test data
set we will use only the three formant frequency values from the Pols et al. data set. In
order to make the demonstration not completely trivial we compare two-dimensional
representations. This means that in both cases some data reduction must take place.

4.2 The auto-associative neural net

An auto-associative neural net is a supervised neural net where each input is mapped to
itself. We will use here the supervised feedforward neural net as is implemented in the
PRAAT program. Auto-associativity in these nets can best be accomplished by making
the output units linear3 and the number of dimensions of the input and output layer must
be equal too (Weenink, 1991). The trivial auto-associative net has no hidden layers and
maps its input straight to its output. Interesting things happen when we compress the
input data by forcing them through a hidden layer with less units than the input layer.
In this way the neural net has to learn some form of data reduction. This reduction
probably must be some way of principal component analysis in order to maintain as
much variation as possible in the transformation from input layer to output layer.

Since our input data is three-dimensional, the number of input and output nodes for
the neural network is already fixed and the only freedom in the topology that is left is
the number of hidden layers and the number of nodes in each hidden layer. To keep
the comparison as simple as possible, we will use only one hidden layer in this task
with two nodes in this layer. The resulting topology for the supervised feedforward
neural net is a (3,2,3) topology, i.e., 3 input nodes, 2 hidden nodes and 3 output nodes.
A network with this topology has only 17 adaptable weight: 9 weights for the output
layer and 8 weights for the hidden layer. The topology of this network is displayed in
figure 4.

In the training phase we try to adjust the weights of the network in such a way
that when we propagate an input through the neural net, the output activation of the
neural net will equal the input. Of course this is not always possible for all inputs and
therefor we try to make them as close as possible on the average. Closeness is then

3This linearity is only for the output nodes, the hidden nodes still have the sigmoid non-linearity.
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Fig. 4. Topology of the supervised auto-associative feedforward neural net used for learn-
ing the associations between logarithmically scaled formant frequency values.

mathematically defined as a minimum squared error criterion.

4.3 Data preprocessing

In order to guarantee proper training we have to arrange for all inputs to be in the
interval (0, 1). We have scaled all formant frequency values as

fi = log
Fi

(2i − 1)500
+ 0.5, for i = 1,2 and 3. (34)

In this formula formant frequenciesFi in Hertz are first scaled with respect to the res-
onance frequencies of a straight tube which are at frequencies of (2i − 1)500 Hz. Next
the logarithm of this fraction is taken4. Since the logarithm of this fraction can take on
negative values we add the factor 0.5 to make the number positive.

To show the effect of this scaling we have drawn in figure 5 the box plots of the data
before and after the scaling. A ”box plot”, or more descriptively a ”box-and-whiskers
plot”, provides a graphical summary of data. The box is marked by three continuous
horizontal lines which, from bottom to top, indicate the position of the first, second and
third quartile. The box height therefor covers 50% of the data (the line of the second
quartile shows of course the position of themedian). In thePRAAT version of the box
plot, the box has been extended with a dotted line that marks the position of the average.
The lengths of the vertical lines, the ”whiskers”, show the largest/smallest observation
that falls within 1.5 times the box height from the nearest horizontal line of the box.
If any observations fall farther away, the additional points are considered ”extreme”
values and are shown separately.

4It is not strictly necessary to take the logarithm. The scaling with the corresponding uneven multiple
of 500 Hz for each formant is already sufficient to render all values in the interval (0.4,2.2]. Subsequently
dividing by a factor somewhat greater than 2.2 would yield numbers in the (0,1) interval. Taking an extra
logarithm, however, achieves a somewhat better clustering. A discriminant classification with equal train
set and test set shows 73.9% correct for the logarithmic scaling, as was already shown in section 3.2,
versus 72.8% for the alternative scaling discussed in this footnote.
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Fig. 5. Box plots before (left) and after (right) scaling the logarithmically transformed
frequency values. Thefi are scaled to the interval (0, 1) according to equation (34). The
dotted lines in the box plots indicate the average values.

Besides scaling the values to the (0, 1) interval we also note that the locations of
the scaled formant frequency values have become more equalized. The following script
summarizes the scaling.

Create TableOfReal (Pols 1973)... no . Only frequencies, no levels.
Formula... log10 (self / ((2*col-1)*500) + 0.5 . Equation (34).

Script 4: Scaling of the formant frequencies to the (0, 1) interval.

4.4 Training the neural net

After processing the data we finally have a table in which all elements are within the
(0, 1) interval. We duplicate this table and cast the two resulting objects to aPattern -
object and anActivation -object, respectively. These two objects function as the
input and output for the auto-associative feedforward neural net. The next step is then
to create a neural net of the right topology, select the input and the output objects and
start learning. Preliminary testing showed that 500 learning epochs were sufficient for
learning these input-output relations.

Because the learning process uses a minimization algorithm that starts the mini-
mization with random weights, there always is the possibility to get stuck in a local
minimum. We can not avoid these local minima. However, by repeating the minimiza-
tion process a large number of times, each time with different random initial weights,
we can hope to find acceptable learning in some of these trials. We therefor repeated the
learning process 1000 times and each time used different random initial weights. The
repeated learning only took 27 minutes of cpu-time on a computer with a 500 MHz
processor. It turned out that after these 1000 learning sessions all the obtained minima
were very close to each other. The distribution of the minima in this collection of 1000
was such that the absolute minimum was 0.5572, the 50% point (median) was at 0.5575
and the 90% point at 0.5580. If we consider that the training set had 600 records and
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each record is a 3-dimensional vector with values in the interval (0, 1) and this mini-
mum is the sum of all the squared errors then excellent learning has taken place. We
have stored the weights of the neural net that obtained the lowest minimum. Script 5
summarizes the learning process.

min_global= 1e30 . Initialize to some large value.
Create Feedforward Net... 3_2_3 3 3 2 0 y . Topology (3, 2, 3).
for i to 1000

select FFNet 3_2_3
Reset... 0.1 . All weights random uniform in [-0.1, 0.1].
plus Activation pols_50males
plus Pattern pols_50males
Learn (SM)... 500 1e-10 minimum squared error . 500 epochs.
select FFNet 3_2_3
min = Get minimum
if min < min_global

min_global = min
Write to short text file... 3_2_3 . SaveFFNet -object to disk.

endif
endfor

Script 5: Training the neural net.

4.5 The comparison

Now that the best association between the three-dimensional outputs and inputs by
means of two hidden nodes has been learned by the neural net, we want to compare this
mapping with the results of a two-dimensional principal component analysis. We want
to obtain the representation of all the inputs at the two nodes of the hidden layer. This
can be done by presenting an input to the trained neural net, let the input propagate to
the first hidden layer and then record the activation of the nodes in this layer. The input
to the neural net will therefor be a 600× 3 table and the output will be the activation at
the hidden layer, a table of dimension 600× 2. Script 6 summarizes.

select FFNet FFNetmin . Select the trained neural net
plus Pattern pols_50males . + the input.
To Activation... 1 . Layer 1 is the hidden layer.

Script 6: Get activation at hidden layer.

The mapping to the principal component plane of the scaled data is simple to ob-
tain. See for example Weenink (1999) for more information on principal component
analysis. The first two principal components explain 95.8% of the variance. Script 7
summarizes.

To get more insight in the results of the two different analysis we have plotted
in figure 6 the neural net and principal component representations of the formant data
preprocessed according to equation (34). The figure on the left shows the representation
in the hidden layer, the figure on the right displays the data in the principal component
plane. Both representations look very similar and closer inspection shows that they
are almost reflected versions of each other. When we compare them to figure 1, we
notice a great resemblance which shows that predominantly only the first two formant
frequencies contribute to the representations in figure 6.
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Create TableOfReal (Pols 1973)... no . No levels.
Formula... log10 (self / ((2*col-1)*500) + 0.5
To PCA . Principal Component Analysis.
vaf = Get fraction variance accounted for... 1 2
plus TableOfReal pols_50males
To Configuration... 2 . The 2-dimensional mapping.

Script 7: Mapping to the principal component plane.
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Fig. 6. Two different representations of the formant frequency data scaled according to
equation (34). Left: the representation at the hidden layer of the neural net of figure 1
with topology (3, 2, 3). Right: the principal components plane of the first two principal
components. The plain and dotted arrows are data taken from table 5 and indicate the
directions of the eigenvectors for the first and second canonical correlation, respectively.

We can now combine the two representations in one 600× 4 data matrix and cal-
culate the correlations between the columns of this matrix. The correlation coefficients
are shown in the upper diagonal part in table 4. The following script summarizes.

select TableOfReal hidden
plus TableOfReal pca
Append columns . Now 2 times 2 columns→ 4 columns.
Rename... hidden_pca
To Correlation

Script 8: Correlations between the hidden layer and the principal component representations.

For the principal components, the table confirms that the correlation coefficient be-
tween the first and the second principal component is zero, as it must be of course,
since the whole purpose of principal component analysis is removing correlations be-
tween dimensions. The representations at the two hidden nodes are not independent
as the (negative) correlation coefficient between node 1 and node 2 shows. Substan-
tial correlations exist between the two neural dimensions and the principal component
dimensions. However, the two plots in figure 6 suggest that there is more correla-
tion than is shown in the table. This is where a canonical correlation analysis can be
useful. The results of the canonical correlation analysis between the two-dimensional
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Table 4. The correlation coefficients for the combined representations of formant frequen-
cies at the hidden nodes of a neural network and principal components. The lower diagonal
part contains the correlations after a Procrustus similarity transform on the hidden nodes
representation. For clarity, diagonal ones have been left out.

node1 node2 pc1 pc2

node1′ −0.363 0.927 −0.376
node2′ −0.055 −0.686 −0.727

pc1 1.000 −0.029 0.000
pc2 −0.025 1.000 0.000

Table 5. Characteristics of the canonical correlation analysis between the two-dimensional
representation of formant frequencies at the hidden nodes of a neural network and the
two principal components. Canonical correlation coefficients and corresponding pairs of
eigenvectors are shown.

ρ node1 node2 pc1 pc2

1 1.000 0.854 −0.520 0.999 −0.033
2 1.000 0.488 0.873−0.017 −1.000

representation at the hidden nodes and the two-dimensional principal component repre-
sentation are displayed in table 5. Besides canonical correlation coefficients, the table
also shows the eigenvectors. Additionally, the eigenvectors are graphically displayed
in figure 6 with arrows. The two arrows in the left and the right plot, drawn with a
plain line, are the directions of maximum correlation between the two representations:
when we project the 600 two-dimensional data points on these directions, the resulting
two 600-dimensional data vectors have the maximum obtainable canonical correlation
coefficient of 1.000. The second coefficient also equals 1, rounded to three digits of
precision. The corresponding eigenvectors are drawn as the arrows with a dotted line.
In figure 7 we have plotted the canonical variates (scores) for this analysis. Script 9
summarizes.

select TableOfReal hidden_pca . 4 columns.
To CCA... 2 . 2 dependent variables.
plus TableOfReal hidden_pca
To TableOfReal (scores)... 2

Script 9: Get canonical variates (scores).

We see from the plots in figure 7 a nice agreement between the scatter plots of the
neural net scores on the left and the principal component scores on the right. However,
we note from figure 6 that the two eigenvectorsy are not mutually orthogonal. The
same occurs for the two eigenvectorsx, they are not orthogonal either (although harder
to see in the figure, the numbers in table 5 will convince you). This is a characteristic of
equations like (4) and (5): in general these equations don’t have eigenvectors that are
orthogonal. Because the scores (canonical variates) are obtained by a projection of the
original data set on the eigenvectors of the canonical correlation analysis, the resulting
scatter plots will show a somewhat distorted map of the original data. This is in contrast
with principal component analysis where the eigenvectors are orthogonal and therefor
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Fig. 7. Scatter plots of canonical variates for the dependent (left) and the independent
data set (right). The dependent and independent data sets are the neural net data and the
principal component data set, respectively.

the new principal dimensions are a mere rotation of the original dimensions. This
means that a principal component analysis does not change the structure of the data set
and relative distances between the points in the data set are preserved. In the mapping
to the canonical variate space, the structure of the data set is not preserved and the
relative distances have changed.

4.6 Procrustus transform

It is possible, however, to transform one data set to match another data set, as closely as
possible, in which the structure of the transformed data set is preserved. This similarity
transformation is called a Procrustus transform. In the transform the only admissible
operations on a data set are dilation, translation, rotation and reflection and we can write
the equation that governs the transformation of data setX into Y as follows:

Y = sXT + 1t′. (35)

In this equations is the dilation or scale factor,T is an orthogonal matrix that incorpo-
rates both rotation and reflection,t ′ is the translation vector, and1 is a vector of ones.
Given data setsX andY, a Procrustus analysis delivers the parameters fors, t andT.
The equation above transformsX into Y. The inverse, the one that transformsY into X
can easily be deduced from equation (35) and is:

X =
1
s

(Y − 1t′)T ′. (36)

More details of the Procrustus transform and the analysis can be found in Borg &
Groenen (1997). In figure 8 we show the result of a Procrustus analysis on the neural net
and the principal component data sets. The plot on the left is the Procrustus transform of
the neural net data set and was obtained from the plot in figure 6 by a clockwise rotation
with an angle of approximately 31◦, followed by a reflection around the horizontal axis,
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Fig. 8. Scatter plots of the Procrustus-transformed neural net representation (left) and
the principal component representation (right). The plot on the left is obtained from the
left plot in figure 6 by a clockwise rotation of 31◦, followed by a reflection around the
horizontal axis, a scaling by a factor 2.98 and a translation with the vector (-0.42, 1.35).
The plot on the right is only for comparison and shows the same data as the plot on the
right in figure 6.

a scaling by a factor 2.98 and a translation with the vector (-0.42, 1.35). The parameters
for this transform were obtained from matching the two-dimensional neural net data set
with the two-dimensional principal component data set. The two plots now look very
similar. In table 4 we show in the lower diagonal the correlation coefficients between
the Procrustus-transformed neural net data set and the principal component data set.
These correlations were also obtained, in a manner analogous to the data in the upper
diagonal part, by appending columns into a combined data set. Script 10 summarizes.

select Configuration pca
plus Configuration hidden
To Procrustus
plus Configuration hidden
To Configuration . Apply Procrustus.
Rename... hiddenp
To TableOfReal
plus TableOfReal pca
Append columns . Combine the two tables.
To Correlation

Script 10: Correlation of Procrustus-transformed data with principal components.

When we compare corresponding data elements above and below the diagonal in
table 4, we notice that node1′ and node2′ have become more decorrelated as compared
to node1 and node2, making these new dimensions more independent from each other.
The pc1 and pc2 have not changed and therefor remain uncorrelated. And, finally,
the correlations between node1′ and pc1 and, especially, between node2′ and pc2 have
increased and are almost perfect now.
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4.7 Summary

All the data presentations in the preceding sections have shown that there is a great
amount of similarity between the internal representation of a auto-associative neural
net and a principal component analysis for the Pols et al. formant frequency data set.
Although the presentation in these sections present no formal proof and were only
used as a demonstration of some of the methods available in thePRAAT program, we
hope that it has been made plausible that auto-associative neural nets and principal
components bear a lot in common.

5 Discussion

We have shown that the canonical correlation analysis can be a useful tool for inves-
tigating relationships between two representations of the same objects. Although the
mathematical description of the analysis that has been given in this paper can be con-
sidered as aclassicalanalysis, the results can also be used with modern robust statistics
and data reduction techniques. These modern techniques are more robust against out-
liers. Essential to these modern techniques is a robust determination of the covariance
matrix and the associated mean values (Dehon et al., 2000). The description we have
given in section 2.2.1 does not prescribe how a covariance matrix is obtained and could
therefor be used with these modern techniques.
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