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Abstract 

In this study the specific problem of robustness in automatic speech recognition under 
various acoustic conditions is reviewed. The currently most used techniques to solve this 
problem are discussed. One specific technique (RASTA-PLP) is then implemented and 
compared with a more conventional approach (MFCC) for the frond-end processing for 
the recogniser. This technique is tested in a fictitious application (with a 26-word 
vocabulary, finite-state grammar, 10 speakers, and added Gaussian noise) intended for use 
in an autonomous robotic system. Preliminary word recognition results show promising 
indications that the chosen technique is suitable for improving the robustness. 

1. Introduction 

In this paper the preliminary results of a pilot study on robust speech recognition are 
presented. This study serves as a first step towards an intended long-term research 
project on a sound understanding machine (SUM) for an autonomous robot. If funding 
is approved, this project will be carried out at the Institute of Phonetic Sciences (IFA) 
and at the Section of Intelligent Autonomous Systems (IAS) of the University of 
Amsterdam. The results of the present pilot study will be useful for further 
development of the SUM project. 

In section 2 the general problem of robustness in automatic speech recognition 
(ASR) is discussed. The three most promising approaches in this field are reviewed. 
Next the design of the system for the pilot study is given. Finally, the results of the 
pilot study are presented and future work, related to the SUM project, is discussed. 

2. Robust speech recognition 

Nowadays, a commercial large-vocabulary continuous speech recogniser can already 
reach a performance level of 95% word accuracy for the clean voice of a single person 
via a close-talking, head-mounted microphone. However, in many real world 
applications, speech must be captured via a hands-free and "head-free" microphone. In 
such situations, ambient noise will certainly interfere. The recognition algorithm for 
clean speech usually performs very unsatisfactorily for noisy speech. Even for a 
moderately noisy environment and a small vocabulary task, additional techniques are 
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required to reach an acceptable recognition rate. The issue of robustness in ASR has 
mainly been translated into technical approaches to better accommodate into a speech 
recogniser various sources of variability introduced by a corrupted speech signal. The 
development in this area currently attracts much research interest (e.g. Juang, 1995), 
apart from the effort put into the deployment of speech technology. 

Much of the variability in speech, including speaker variability, is handled in 
modern ASR systems by statistical methods. The more complex the type of variability 
is that has to be accommodated in a recogniser, the more sophisticated the model 
structures get. To this end we see for instance monophone HMMs (hidden Markov 
models), triphones, duration models (Wang, 1997) and phonological rules. Various 
kinds of distortions in the speech signal, as well as noise, introduce more variability 
compared to the clean speech signal. A robust speech recogniser should then also be 
able to deal with this new variability, either by the existing structure, or, if necessary, 
by additional structures. 

After several decades of theoretical and technical development in speech science 
and technology to solve, real-life problems, one way to approach the problem is to 
distinguish between the variable and the invariable parts of the speech signal. In 
automatic speech recognition, one generally ignores the variable part whereas focusing 
on the invariable linguistic content carried in the signal. The current level of 
sophistication, however, is that we do not know whether separating the variable part 
from the invariable part in speech is the ultimate paradigm for ASR. The intrinsic 
reason behind this may still be a lack of a sufficient understanding of the human-to­
human speech communication process. For lack of a better solution, we might have to 
use this paradigm still for quite a time. Usually the invariability is closely related to the 
basic information-carrying units in the signal of speech and various environmental 
sounds. In other words, we want our system to recognise for example voice commands 
and a few interested sounds (like slamming doors, breaking glass, telephone ringing 
etc.), irrespective of the background noise these signals are embedded in. 

Based on the well-developed standard system structure of a speech recogniser 
(based on e.g. HMM), speech and other sounds should be represented within the ASR 
system by a finite number of measures (or features) of the signal. This is because the 
entirety of the information in the acoustic signal is too much to process, yet not all 
kinds of information are relevant for specific tasks. Feature extraction (usually 
achieved in the "front-end" of an ASR) has been based on some understanding of the 
human communication processes and on years of engineering experience. One of the 
approaches for robust ASR is to select such features that are relatively insensitive to 
the unwanted variations, while keeping the part, which represents the message in the 
signal relatively intact. This is the "feature-based" approach for robust recognition. 
Essentially the rest of the system is the same as for the recognition of clean speech. An 
alternative set-up could be to use a "speech-enhancement" system followed by an 
ASR, in which the former produces speech with an enhanced quality for the latter. 
However such approaches have not currently been applied in real world ASR systems, 
mainly due to the heavy calculation load for the added enhancement algorithms and 
the limited benefits they currently provide. 

Another approach is called "model-based". Here "model" refers to the basic 
modelling units (e.g. an HMM), instead of the mechanism embedded in the feature­
extracting front-end that models some human speech production or perception 
processes (according to our terminology, the function of the front-end is already 
included in the feature-based approach). In such a model-based approach all 
information concerning various kinds of variability is retained after the front-end. The 
part of the system that models the patterns to be recognised, compensates, de­
emphasises, or adapts to the unwanted variability. Because of the strong (statistical) 
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modelling power of the mathematical framework of HMMs (or neural nets), there is 
still a potential for these models to do more sophisticated jobs. For instance, one can 
refine the internal structure of these models, or one can redefine the mapping between 
these models and particular physical events (e.g. to model the pure sound categories 
and noises by separate models). 

The third approach to the problem of robustness is to use a microphone array. This 
approach can be considered an enhancement method implemented outside of the 
recogniser. These three approaches are discussed below in more detail. 

2.1. Feature-based approach 

For clean speech, linear predictive coefficient (LPC) is commonly used, resulting in 
good recognition performance. Mostly LPC is implemented as an all-pole AR model to 
capture the vocal-tract properties of vowel-like sounds. Usually autocorrelation 
methods are used on a windowed section of the speech samples. When LPC is applied 
directly to a signal that contains distortions introduced by e.g. communication channel 
and environment, the performance degrades. 

The currently most pronounced feature-based approach for robust speech 
recognition is PLP (perceptual linear predictive, Hermansky, 1990), sometimes 
combined with RAST A (relative spectrum, Hermansky et al., 1991 and Hermansky 
and Morgan, 1994 ). In PLP analysis, additional steps to LPC are included to account 
for the human auditory system: 

(1) A critical-band spectral resolution mechanism integrates the frequency components 
within a total of 15-18 frequency bands based on inner-ear analogy (nearly 
logarithmic or Bark spacing of the centre frequencies and the asymmetrical shape 
of each band); 

(2) An equal-loudness curve to approximate the nonequal sensitivity of the human 
hearing in different frequency regions (e.g. flat between 400 and 1200 Hz, 6 dB/oct 
between 1200 and 3100 Hz); 

(3) An intensity-to-loudness conversion approximated by a power of (1/3). 

In practice, the implementation of various steps in the PLP processing is also based on 
computational efficiency, and performed in either the time or the frequency domain. 

In general, PLP representation of speech mimics some aspects of the human 
auditory perception mechanism, capturing useful speech information while de­
emphasising e.g. speaker variability. Experiments also showed that PLP outperformed 
LP in ASR. There are evidences that the human auditory system captures speech in an 
efficient way (its best ability is dynamically tuned to the important speech feature). In 
this respect, if the target of our recogniser is speech, PLP can produce a better feature 
than LP. In principle, other computer algorithms may be developed which do not 
mimic humans, but are more efficient for representing speech. However, such 
algorithms have not yet been developed. 

RASTA, on the other hand, usually consists of additional processing steps to PLP. 
The main additional steps are applied after the critical-band integration of PLP. Based 
on an observation that human perception is more sensitive to relative changes, the 
static or slow-changing part of the signal (in each critical-band) is effectively filtered 
out. This is a band-pass filtering process (which emphasis signals around 4 Hz) applied 
on the already processed time sequence of the feature vectors (short-term spectra, 
usually at a 100 Hz rate). 
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Due to the fact that most distortions due to unknown channel characteristics 
(telephone lines or microphones) are effectively convolutive, RASTA is best 
implemented in a logarithmic domain of the spectrum, which makes the different parts 
additive. Non-linear conversions are required. RASTA-PLP outperforms PLP for 
recognition of channel-distorted speech. 

2.2. Model-based approach 

There also exists processing power after the front-end processing in a recogniser. In 
the basic structure of an HMM-based recogniser, the states of the HMMs collect the 
statistics of the various patterns in the speech signal. One of the commonly used 
parametrical distributions of these states is "Gaussian mixtures". 

One of the model-based approaches for robustness of ASR is to separately model 
the different parts of speech by different parts of the model structures. For example, 
separate sets of HMM parameters (e.g. the mean and variance of the Gaussians) are 
defined for the useful information and the distortion part, respectively. To this end 
equalisation methods (Juang and Paliwal, 1992) and adaptation methods (Gales and 
Woodland, 1996) have been developed. 

Though not necessary by definition, these model-based approaches are mostly 
designed to treat the distortions in a paradigm of adaptation. So the ASR system is 
firstly trained for clean speech or speech with known environment properties, and the 
ASR system is capable of adapting to the properties of speech of unknown or new 
environments. Sometimes the problem is addressed in a framework of a "mismatch" 
between training and testing conditions for the statistical ASR (Sankar and Lee, 1996). 

The model-based approach is not yet considered in the current study. It may be 
considered in the long-term SUM project. 

2.3. Microphone-array approach 

One point, common to both the feature-based and the model-based approaches, is that 
additional structures (regularities) in the signal are found and built into the ASR 
system to take advantage of the difference between the wanted speech and the 
distorting signals. Similar to this, another approach has been developed which makes 
use of an array of microphones to capture the acoustic signal. In this case, the 
additional structure that tries to separate the speech and distorting signals is physically 
located outside the recogniser. The geometrical relations between the different sound 
sources will result in different signals arriving at the microphones in the array. Of 
course, special algorithms have to be developed to actually make use of the extra 
information obtained from the microphone-array (Oh and Viswanathan, 1995). In 
principle, a recogniser used with a microphone array should also be tailored to the kind 
of multi-channel signal in order to use the additional information optimally. 

The difference in signals via the different microphones can also be used to locate a 
sound source. Since this is also a task of (a group of) voice-interactive robots, we can 
hope to ultimately use this information to do both jobs. Probably still more information 
will be needed for both sound localisation and enhancement of the sound quality, such 
as the information obtained at different points in time (time of arrival) from a moving 
sound source. The algorithm will be rather complicated due to this double-task. There 
must be a trade off between the complexity of the system and the task requirement. 
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3. First implementation of a feature-based approach: a pilot study 

As a first step in the SUM (sound understanding machine) project, a pilot study has 
been carried out. We tried to define a sub-task from the research and development of 
the main SUM project, that should be self-contained. It also should provide useful 
results for the SUM project. Judging from the scheduling of the SUM project, at this 
point in time when the robot system is not yet implemented, the starting period of the 
project can concentrate on the robust recognition problem. This problem should in any 
case be solved for the SUM project, because the robot, on which the SUM is mounted, 
is going to act in a noisy real-world environment. Another reason for the definition of 
this specific short project stems from the extensive experience of the author and the 
IF A in speech recognition in general, and from a recent shift of research interest into 
robust speech recognition of the first author, in particular. 

Analysing the three approaches reviewed above, we have chosen to investigate the 
feature-based approach first in the short project. This approach can be implemented in 
the current software framework of the recognition system used until now at the IFA. 
The second model-based approach will be investigated after completing this short 
project, probably using also the same framework. The third (microphone array) 
approach will be implemented later, but this is only possible when the hardware and 
overall set-up of the robot system are available. Furthermore, the main task of the 
microphone array will be sound source localisation, rather than speech enhancement. 
However, since the microphone array will be available in the SUM project, the extra 
information can be helpful also for enhancing the quality of the speech signal arriving 
at the recogniser, thus possibly improving the recognition perlormance. 

3.1. Recognition system and algorithms 

The actual (non real-time) recognition system is based on a software development tool­
kit called HTK (HMM Tool Kit, Young, 1992), developed at the Cambridge 
University. All the source codes (in C) are available, therefore it is possible to modify 
the functionality. The major modification of HTK concerns the signal processing front­
end which converts the speech samples into features, given in the form of analysis 
frames. The original HTK supports, among others, 'MFCC (Mel Frequency Cepstrum 
Coefficients). We decided to add RASTA-PLP into HTK, so that it can be easily 
compared with the MFCC, whereas the rest of the recogniser will be the same. Several 
versions of RASTA and/or PLP processing algorithms (Hermansky et al., 1991) were 
integrated into the HTK. 

The recognition system design for this short project is as follows. Since the total 
number of the words to be recognised is small (26, see section 3.2 below), we define 
HMMs on whole-words instead of any sub-word units. Based on our previous 
experience in duration modelling (Wang, 1997), all HMMs have a linear transition 
topology. We considered 4 states to be sufficient to model the number of different 
portions within each of the words. The observation density of each of these states is a 
mixture of 8 Gaussian components. The observation vector consists of 12 basic 
coefficients, the frame energy, and their first and second time-derivatives, together 
making a 39-dimensional vector. The basic coefficients are either MFCC or RASTA­
PLP. 

IF A Proceedings 21, 1997 15 



3.2. Recognition task and speech database 

The recognition task can be best shown by the finite-state grammar used in the system, 
as given in the block below. It consists of a total of 26 Dutch words, to be used for a 
fictitious robot task in which the robot is ordered by voice commands to come, go 
away, go to certain directions and locations, or fetch coffee or tea. 

$getal = een I twee ! drie J vier J vijf I zes I zeven ) acht I 
negen I nul; 

$num = nwnmer [Ag%%) $getal [Ag%%) $getal; 

$richting = links I rechts; 

$voor_achter = vooruit I achteruit; 

$drank = koffie I thee; 

$Telefoonl = Telel [ [Ag%%] Telel J 
$Telefoon2 = Tele2 [ [Ag%%] Tele2 ] 

$geluid = Deur I Motor I $Telefoonl 

$crnd = korn [[Ag%%) hier] I 

[Ag%%] Telel ]; 

[Ag%%) Tele2 l ; 

$Telefoon2; 

[ [ga [Ag%%)) na:ar [Ag%%]) $richting 

[ga [Ag%%)) $voor_achter I 
[ga [Ag%%]) weg I 
haal [Ag%%) $drank I 
(ga [Ag%%) naar I haal) [Ag%%) $nurn I 

stop; 

$commando = $cmd [[Ag%%] en $cmd); 

( [Ag%%) $corrunando (Ag%%) ) 

With such a grammar, for example the following sentences are allowed (with the 
English translation): 

1 Achterui t en weg. 

2 Weg. 

3 Stop en haal nurnmer drie zeven. 

4 Naar rechts en achteruit. 

5 Stop. 

6 Naar 1 inks en weg . 

7 Haal koffie. 

8 Vooruit en achteruit. 

9 Vooruit. 

10 Naar rechts en weg. 

(Backward and go away.) 

(Go away.) 

(Stop and fetch number 3 7 .) 
(Go to the right and backward.) 

(Stop.) 

(Go to the left and go away.) 

(Fetch coffee.) 

(Forward and backward.) 

(Forward.) 

(Go to the right and go away.) 

In order to account for some speaker variability, a total of 10 speakers (5 male and 5 

female) are included in the speech database. Each speaker spoke a total of 300 
different sentences (different speaker spoke different sets of sentences), of which 250 
were used for system training and 50 used for the recognition test. All the 3,000 
sentence texts were generated randomly by the grammar ·given above. After 
completing the recording in quite (in a soundproof chamber), noise-corrupted 
sentences were simulated by adding Gaussian noise to the clean signal at 10, 16 and 22 
dB SNR levels, respectively, to produce the noisy sentences. The SNR was defined as 
the ratio between the variances of the clean speech signal and the added noise signal, 
spanning the whole sentence including the silence at the beginning and the end. 

The initial training used 20 sentences per speaker, all manually labelled (at word 
level, including marks of relatively long pauses between words). Two steps of initial 
training iterations were performed. For all the remaining training sentences, word-level 
transcriptions were obtained by manually adding long pauses between words to the 
sentence transcription generated by the grammar. The initial training generated HMMs 
with one Gaussian component per state. The observation densities were further split 
into 2, 4, and 8 Gaussians. After each split, one iteration of embedded training was 
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performed, and after the last split, 4 iterations finished the training. A total of four sets 
of Hl\1Ms were generated: for .MFCC and RASTA-PLP, and with clean and 10 dB 
SNR (the most serious noise in our test), respectively 

In the tests, the same finite-state grammar as above was used to constrain the 
between-word transitions, and no further bi-gram language model was used for such a 
relatively simple task. The test set consists of 500 sentences, with 50 sentences of each 
of the 10 speakers. Each of the four sets of HMMs was tested on four conditions: 
clean, 10, 16, and 22 dB SNR, respectively. This resulted in a total of 16 acoustic test 
conditions. Among these 16 conditions, four are "matched noise level" conditions, 
which tested the four sets of HMMs on the respectively same signal processing scheme 
and the same noise level (e.g. 10 dB .MFCC). The remaining 12 "unmatched" 
conditions were added after finding that all the matched conditions resulted in a rather 
high word-correct score. We also performed another set of tests on the same 16 
conditions, but without using the language model (each of the 26 words can transit to 
any words with the same probability). We did this to see the effect of the language 
model on such a simple recognition task. 

The language match factors and the word-insertion penalty were optimised 
(producing about the same insertion and deletion errors) only to a single set of values 
for the 16 conditions with the language model, and to another set of values for the 
other 16 conditions. In the current test, environmental sounds (telephones etc.) have 
not yet been included. 

3.3. Results and discussion 

The recognition scores for the 16 conditions, with and without the language models, 
are shown in the two tables. Since the effect of using the language model (as shown in 
tables 1 and 2) in this simple task is not very significant, we further show in Figure 1 
only the scores of the 16 conditions with the language model. 

Table 1 & 2. Percentages (%) are shown of both the word correct score (cor.) and 
accuracy score (acc.), which includes the insertion errors. The shaded areas show the 
matched conditions, e.g., using the HMMs trained with clean speech also to be tested on 
clean speech. 

Test SNR 

HMM trained o n  

MFCC clean 

MFCC10dB 

RASTAclean 

RASTA 10 dB 

Test SNR 

HMM trained on 

MFCC clean 

MFCC10dB 

RASTA clean 

RASTA 10 dB 

Without language mode l (word %) 

Clean 22 dB 16 dB 

cor. 

97.57 
> .  ·•···· 

24.52 

> 97.51 
·-.-.· 

> . 
43.79 

acc. 

97.06'' 
, • • 

0.86 

97.12. 
� · . . . ..... � 

28.36 

cor. 

85.42 

85.37 

89.44 

87.63 

acc. cor. 

76.95 67.01 

75.48 94.58 

71.64 74.41 

82.66 94.01 

With language model (word %) 

acc. 

45.20 

92.88 

50.00 

92.99 

10 dB 

cor . acc. 

42.37 23.16 

93.62·:: > 92�26 
...... ,;- .�;;_:.;.:,,;L::�:.:.;._°'=: .. -:··.! -::"<" . 0.: 
50.11 35.14 

' .. ·
93,so· , 94.01 

Clean 22 dB 16 dB 10dB 

cor. acc. cor. 

99.83
' 

99.72, 97.57 
... �;-�·-:· ... , -�- . 

42.09 19.15 95.76 

·99. 72 · ··: 99.55··.. 95.82 

55.65 51.13 97.80 

acc. 

96.50 

92.37 

93.28 

96.89 

cor. 

76.95 

98.70 

79.94 

98.87 

acc. cor. acc. 

66.33 51.36 36.55 

98.14 :·. 98.4i· ', 98.25 
".(·.. : .. : :. : •:,:.-=.,:

.
::� -�� .. . 

65.31 66.05 50.85 

98.76 :; 98.76 7-··: 98.64 

IF A Proceedings 21, 1997 17 



The following points can be observed. (1) The effect of using the language model is 
marginal. The following points are for the conditions with the language model, 
however these points apply equally well to the conditions without the language model. 
(2) Each of the four HMM sets performs best on its matched condition, whereas the 
performance degrades as the noise condition gradually deviates more from the training 
condition. For example, the HMM trained with clean MFCC recognises 99.83% 
correct of the clean speech, but it only performs 5 1.36% correct when tested at 10 dB 
SNR. (3) The scores for "matched" noisy condition (10 dB) are slightly lower than 
those of the "matched" clean conditions, for both MFCC and RASTA-PLP processing. 
(4) RASTA-PLP gives rise to a clearly higher score for the unmatched conditions than 
MFCC does. For example, for recognition of clean speech, the noise-trained (lOdB) 
RAST A-PLP HMMs resulted in 55.65% correct whereas the noise-trained MFCC 
HMMs resulted in only 42.09% correct. This is a clear indication that the RAST A-PLP 
has a better ability to adapt to a different acoustic environment. 

100 

80 

� 
e... 
... 
0 

� 
60 

... 
0 
0 

" 
.. 0 
� 40 

20 

0 

clean 22dB 16dB 10dB 

test condition (SNR) 

-+- M FCC clean 

.......__RAST A clean 

-MFCC10d8 

__..,_RASTA 10dB 

HMM training condition 

Figure I. Word correct scores for tests using the language model. 

4. Conclusion 

In this paper we reported about a pilot study on the first investigation of robust speech 
recognition. The current state of the art of the technical development in ASR, 
particularly its application for noisy and distorted speech is reviewed. Based on this 
review, the research directions are pointed out for the pilot study, as well as for the 
speech recognition part of the long-term SUM project. The direction for the short 
project is proven to be a good one, as shown with the recognition results obtained from 
the tests. Concerning the limited tests in this study, the results should be extended only 
with care into the long-term SUM project. Some of the limits are, that the task is 
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fictitious, the environment sounds (to be recognised) are not yet included, and most of 
all, the environment noise is simulated and added later on, rather than from the real 
room acoustics. Of course, the final performance only makes sense when the whole 
SUM is developed and is integrated with the interactive robot(s). 

The system design of the recogniser itself plays an essential role in the good 
performance achieved in the present tests. This design is mainly based on the previous 
experience of the first author (Wang, 1997), therefore those details are not presented 
again in this paper. In future work, more experience will be required for the more 
complicated, real world recognition task. A thorough understanding of the techniques 
in the field of ASR, as well as actively tracing new technical developments in robust 
recognition, will be essential for the success of the SUM project. The integration of the 
SUM within the robot system will depend on good and extensive corporation with 
other researchers in the group of intelligent autonomous systems. The feedback 
requirement for the recogniser from the special system configuration and acoustics of 
the robot will also be very valuable in providing new insight for the development of 
(the application of) the robust ASR systems. 
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