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Abstract 

The relation will be discussed between the duration probability density function (pdf) 
of a segment, as observed in training speech material for an HMM recognition system 
on the one hand, and the transition and emission probabilities in a specific phone-like 

unit (PLU) on the other. First, a theoretical relation between the duration pdf of Dutch 
vowels and the HMM transition probabilities of the corresponding speech segments is 
reconsidered. Next, the theoretical basis of this relation is extended with respect to the 
incorporation of the HMM emission probabilities. 

1. Introduction 

In speech recognition applications based on hidden Markov modelling (HMM), 
usually a large number of HMM-parameters are to be trained in order to model the 
speech segment characteristics in a speech database. The training of the HMM-model, 
i.e. the iterative adjustment of the transition and emission probabilities in all the phone
like units by e.g. the Baum-Welch algorithm, is time-consuming. For example, the 
connected-speech recognition system REXY described by Van Alphen (1992), contains 
only 39 phone-like units and already more than 30,000 unknown parameters. One 
overall update of all its parameters takes several hours of CPU-time on a µ-VAX. 

This paper concerns the question, how phonetic knowledge can be implemented into 
the statistically-based HMM speech recognition systems. Such an implementation may 
be useful in order to substantially reduce the required training. After a successful 
training procedure, an HMM-based system contains 'statistical knowledge' about the 
characteristics of speech segments. This implicit 'statistical' knowledge, which is 
encoded in the transition and emission probabilities, should at least be in line with the 
explicit 'phonetic knowledge' about the segments. In this paper, we will focus on the 
relation between aspects of phonetic knowledge on the one hand, and explicit 
statements about the HMM parameters on the other, in the case of Dutch vowels. Such 
phonetic knowledge is available in e.g. the description of many phonetic details about 
the influence of speaking rate on the realization of speech segments (c.f. Strange, 1989; 
for Dutch vowels: Van Son & Pols, 1990). 

Suppose two speech databases contain identical texts carefully spoken by the same 
speaker under identical circumstances, the only difference being, for example, the 
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speaking rate. Two independent HMM training sessions on these databases will result 
in two different HMM parameter sets.- However, the phonetic similarity between both 
databases will be reflected in some kind of similarity between both HMM parameter 
sets. This similarity provides a possibility of an intelligent training procedure, such as a 
'warm' start, if an HMM is to be trained on a speech database spoken at fast rate while 
the HMM parameters are already known for the normal speech rate. The study of the 
similarity between both HMM parameter sets gives insight in the potential duration 
modelling of HMM. If such a similarity between the parameter sets cannot be found in 
this case (in which only one one-dimensional parameter is varied), one might doubt 
whether an intelligent incorporation of phonetic knowledge in general into an HMM 
recognition system is ever possible. 

The differences between corresponding HMM parameters in the two parameter sets 
reflect the statistical differences between the realizations of the speech segments. The 
transition and emission probabilities are related (in a complex way) to the statistical 
properties of the segment duration as well as of the spectral details. However, from a 
theoretical point of view, the modelling of duration by an HMM can be understood 
more easily than the spectral modelling. One reason is that the classical theory of 
Markov chains can be used to explicitly relate the modelled segment duration and the 
HMM transition parameters. Secondly, in the literature, several attempts have been 
described to model duration in HMM by using additional techniques (e.g. clustering: 
Picone, 1989; Lerner & Mazor, 1990, and references therein). 

In ten Bosch (1991), an explicit relation was formulated between the transition 
probabilities within one phone-like unit on the one hand, and the duration probability 
density function (duration pelf') of the corresponding segment on the other hand. This 
analysis was hypothetical in the sense that the emission probabilities in the HMM have 
not been taken into account. However, these emission probabilities play an important 
role in the actual modelling of duration, as is clear from the structure of the Baum
W elch-algorithm (c.f. Lee, 1989). In this paper, we will consider how the original 
theoretical set-up in ten Bosch (1991) can be extended with respect to these emission 
probabilities. This extended theory relates the HMM parameters of one phone-like unit 
(i.e. its transition and emission probabilities) to one explicit phonetic parameter (i.e. the 
modelled segment duration). 

2. Shortcomings of the previous theoretical model 

The theoretical model in ten Bosch ( 1991) specifies a relation between the duration 
pdf of a speech segment, and the transition probabilities in the HMM phone-like unit 
(PLU). This relation reads as follows. Suppose P(N) denotes the probability of a 
segment having a duration between Nd and (N+ l)d (d denoting the 'bin width' in a 
duration histogram; this parameter typically has a value of about 10 ms). The 
corresponding generating function, defined by F(X) = I P(N) XN can be interpreted as 
a transfer function of the PLU by means of its Pade expansion: F(X) = A(X)/B(X). In 
this formula, X denotes a formal variable. It was shown in ten Bosch ( 1991) that a 
topological structure of the corresponding PLU can be found on the basis of the 
algebraic structure of the rational function A(X)/B(X). Here, 'topological structure' 
must be understood in the wide sense, i.e. not only with respect to the 'qualitative' 
topological connections between hidden states, but also with respect to 'quantitative' 
details such as the transition probabilities. The overall tranfer function F(X) of the PLU 
is composed of (many) transfer functions of the simple linear form aij.X, aij denoting 
the transition probability from state Si to state Sj. The actual calculation is rather 
technical but conceptually straightforward; for details the reader is referred to ten Bosch 
(1991). Essential here is the observation that the duration pdf specifies a transfer 
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function that fully depends on the transition probabilities%· 
As a consequence, these transition probabilities can be calculated on the basis of the 

duration pdf of a segment. In the present discussion, we will use the 7-state, 12-
transition PLU-model as used by Lee (1989), Van Alphen (1992), and Wang et al. 
(1992) (figure 1). This PLU is transition-assigned. It has been shown in ten Bosch 
( 1991) that this particular PLU-model is capable of modelling a large class of duration 
pelf's that can be described by the existence of a linear relation between P(N), P(N+ 1), 
P(N+2) and P(N+3) for all N > 3. More precisely, all pdf's P(N) with the property that 
P(N+3) = a1P(N+2) + a1P(N+l) + a3P(N) for all N > 3 such that X3 

= aiX2 + a1X + 
a3 has three real roots between -1 and 1, can exactly be modelled by the particular 7-
state, 12-transition PLU. This seems to be a rigid constraint, but it appears that most of 
the vowel duration pdf' s observed in the REXY training set can adequately be modelled 
by this 7-state, 12-transition PLU. 

By using the theoretical relation between the duration pdf and the PLU-topology, 
the 'optimal' PLU of 13 Dutch monophthongs (i.e. the transition probabilities) have 
been calculated from the observed duration pdf' s. This was performed by minimizing 
the cross entropy between the observed duration pdf and the pdf modelled by the PLU. 
The results are presented in table I. It must be remarked that the emission probabilities 
were tied: only three different emission pdf's (corresponding to 'begin', 'center' and 
'end' of the speech segment) were used. These pdf's are also tied to the first, second 
and third selfloop, respectively. 

From table I, it can be observed that there exist substantial differences between the 
'predicted' model data and the actual observed data. The column 'theoretical aii' 
presents the values of the theoretical selfloop probabilities of a12, a33 and '144· The 
column 'actual aii' shows the values as actually found after the Baum-Welch 
optimization. For most of the vowels (all but schwa, denoted by '@'), the theoretical 
selfloop probabilities are equal (within one PLU) up to a deviation less than 1 percent, 
ranging from 0.81 for a long vowel/'/>/ to 0.53 for a short /I/. In case of the schwa, the 
selfloop probabilities read 0.19, 0.32 and 0.36, which means that the schwa has a 
'deviant type' pelf and a relatively short mean duration. The actual data show a tendency 
a12 > max(a33, a44), the ordering between a33 and '144 being less consistent. Also, the 
phonetic duration of the vowels can be traced back in the theoretical data (a larger 
selfloop probability yields in general a longer duration). 

S7 

Figure 1. The 7-state, 12-transition phoneme-like unit (PLU) as used by Lee (1989), 

Van Alphen (1992) and Wang et al. (1992). 

IF A Proceedings 16, 1992 29 



However, it is clear that the model data, which are not based on any prior 
know ledge of the emission probabilities, do not reflect specific details present in the 
actual data. This within-PLU discrepancy between model data and actual data can be 
understood by considering an extended theoretical model, as will be shown in the next 
section. The extended analysis reveals a relation between the emission pdf's� the set of 
feasible sequences of acoustic observations of the speech segment, and the transition 
probabilities in the PLU. 

3. Extension of the theoretical model 

In order to extend the theoretical model, we will study the influence of the emission 
probabilities on the PLU by having a look at the so-called forward algorithm. The 
forward algorithm evaluates the probability P(O I A.), 0 and A. denoting the sequence of 
observations { 01, ... , ON}, and the particular PLU-model, respectively. Here, and 
throughout the following sections, N will denote the length (number of observations) 
of the observation sequence 0. 

The PLU model has an upper branch, consisting of a series of three selfloops, as 
well as a lower branch, consisting of parallel paths. The upper branch is capable of 
modelling durations exceeding 3d, whereas the lower branch models durations d, 2d 
and 3d. The upper branch consists of a serial combination of 5 states S 1, S2, S3, S4, S1 
and is topologically specified by the four 'simple' transitions S 1S2, S2S3, S3S4, S4S7 
and three selfloops S2S2, S3S3 and S4S4. As the bulk of the pdf-data has maxima 
between 8d and 13d, we will consider the contribution of the upper branch to P(O I A.). 

Tabel I. The 'predicted' and actual selfloop probabilities of S2S2, S3S3 and S4S4. In 

the theoretical case, these values differ less than 1 %, except for the schwa ('@'). All 
figures are multiplied by 1000. 

phoneme as in selfloop probabilities a12, a33 and � 
symbol Dutch theoretical aii actual aii 

a 'paal' 738 793 878 759 
a 'pal' 568 751 728 619 
e 'beet' 750 854 843 756 
E 'bed' 560 760 689 628 
1 'piet' 710 806 717 742 
I 'pit' 528 750 642 515 
u 'boek' 606 739 533 642 
0 'poot' 718 862 792 779 
J 'pot'. 584 697 737 580 
y 'muur' 627 762 738 716 
� 'peut' 810 817 848 804 
re 'put' 553 592 481 579 
@ 'de' 193 321 358 656 565 451 
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Let a(t, i) denote the probability of the joint event of observing Ot during time step 
t, having already observed the observations 01, ... , Ot-1, and arriving in hidden state 
Si. Furthermore, btij denotes the emission probability of observation Ot during 
transtition SiSj, and% denotes the transition probability of transtition SiSj. Then, in the 
present case, by the forward algorithm: 

a(O, i) = 1 
or O 

a(t, i) = Lj a(t-1, j) . aji . btji 

(i = 1) 
(for all other i) 
(for all i, 
l�t�N) 

(1) 

such that P(O I A) equals a(N, 7). All the observations Ot are supposed to be member 
of a (finite) codebook. 

In this formulation of the forward algorithm, it is not straightforward to derive an 
explicit formula for the duration pdf of a modelled segment. If 0 = { 01, ... , ON} runs 
through all possible sequences of N observations, P(N) = Lo P(O I A) denotes the 
probability of observing a sequence of length N. If all the pdf's btji were independent 
of t (so btji = bji), then Io P(O I A) could easily be evaluated by using the previous 
theoretical model using the transfer function F(X) of the upper branch. The transfer 
function of a transition S iSj is then given by the linear polynomial aij. bij·X. However, 
if the emission pdf's depend on t (which is a much more natural case), the coefficients 
of the transfer function have to be modified in a more complex way. We will present a 
solution for the resulting modified transfer function which allows an interpretation of 
our previous observations in a natural way. This solution is given by the following 
algorithm: 

1) Restrict for each transition SiSj a set Oij of 'possible' observations Ok, e.g. by 
selecting those Ok from the codebook for which bkij exceeds a certain threshold. This is 
to have a localization and limitation of the feasible observation space on the basis of the 
emission pdf's. (It makes no sense to deal with all possible sequences without any 
spatial correlation between subsequent observations.) For example, if the emission 
pdf' s of a PLU are tied to three different ones, each corresponding to a selfloop, we can 
construct three (different) sets 022, 033, and 044, corresponding to the three different 
emission pdf' s. In general, the sets Oij are just special subsets from the codebook used. 
By this construction, the three emission pelf's define a certain 'metric' on the set of 
observations; 

2) Set Yij = LOke Oij bkij, i.e. the sum of the emission probabilities of the 
observations Ok in the set Oij corresponding to transition SiSj; 

3) Allot to each transition SiSj a weighting Wij equal to the product of the transition 
probability% and the corresponding Yij found in step 2: Wij =au Yij; 

4) Evaluate the transfer function of the upper branch F(X) by using the newly 
defined transfer function Wij.X of each transition SiSj; 

5) Normalize F(X) to Fnonn(X) according to the additional constraint Fnonn(l) = 1 
by putting Fnonn(X):= F(X)/F(l). 

We observe that this algorithm relates its output F(X) (or Fnorm(X)) to three 
different aspects of the HMM: (a) the sets Oij, i.e. the specification of all possible 
sequences 0, (b) the transition probabilities, and (c) the emission probabilities. The 
framework of the algorithm in step 4 is essentially identical to the framework used in 
ten Bosch (1991). The definition of the newly defined transfer function can be 
considered as an extension of the definition of the transfer function in the previous case, 
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since the old transfer function can be obtained from the extended function by simply 
setting 'Yij = 1 for all transitions SiSj in the extended model, in other words: by not 
clamping the preferred location of the observations Ot. 

Secondly, we make a remark about the interpretability of the transfer functions 
corresponding to a transition SiSj. These functions are all of the form F(X) = WijX ,  
where Wij denotes the normalized weighting of the corresponding transition. In the 
same way as we have seen in the old model can the transfer function (and accordingly 
the weightings Wij) be evaluated on the basis of the known actual duration pdf of the 
segment being modelled by the PLU. However, in the extended version the optimized 
parameters Wij of the transfer function F(X) do not denote the transition probabilities 
au, but they denote a product % 'Yij instead. In other words, given the duration pdf of a 
segment, there is 
1) a trade-off between the actual transition probability % and the value of "{ij (their 
product Wij being determined by the duration pelf), and 
2) a degree of freedom with respect to the actual values of bkij within one set Oij (their 
Sum "fij indirectly being determined by the relation Wij =au "{ij). 

These two points make clear how the information on spectral modelling and 
duration modelling can interact within the PLU. The durational information of a 
segment clamps the set of feasible PLU's (i.e. the set of all possible PLU's with 
identical topology that are potentially capable of modelling the segment) to a specific 
subset. By these points we are able to understand the discrepancies found between 
model data and observed data in the previous section. On the one hand, we observed 
that, in general, the selfloop probability a12 exceeds a33 as well as ClM· On the other 
hand, the weightings Wii were found to be equal (within each PLU) for almost all 
vowels, which yields the following equalities: w22 = w33 = w44, so a12."(22 = a33·'Y33 = 
Cl44·'Y44 for almost all vowels. Since a12 tends to be larger than a33 or (44, Y22 tends in 
general to be smaller than "(33 or "(44, which means that the probability sum of the 
observations in the first set 022 is allowed to be smaller than are the probability sums of 
the observations in 033 and 044. In other words, either (a) the set Oi2 is small and 
only a few observations that occur in the initial part of the observation sequence 0 are 
allowed to be member of 022, or (b) the set 022 contains many elements with low 
probability (e.g. 022 is spatially extended and has many elements 'remote' from its 
center if a Gaussian emission pdf is assumed), or (c) a combination of these effects 
occurs. From this point of view, the modelling of the initial vowel segments is less 
adequate than is the modelling of the center part or the final part. 

With respect to point 2, nothing can be specified without additional, detailed 
information on the emission pdf' s used. 

The derivation of the algorithm is straightforward. For simplicity, we consider the 
case of three tied emission pdf's: Y12 = Y22; '¥23 = "{33 = "(34; '¥44 = "(47. Let Oi2, 033 
and 044 denote the three appropriate subsets chosen from the discrete codebook. (This 
construction can easily be modified in the case of a continuous-density HMM.) If 0 = 
{ 01, 02, ... , ON} is a specific observation sequence of length N, where the first ki + 1 
observations are to be (arbitrarily) chosen from 0 22, the subsequent k1 + 2 
observations from 033, and the last k3 + 1 observations from 044, then P(O I A.) is 
given by the product 

P(O I A.) = (a12 a12k1 a13 a33k2 a34 '44k3 ai1). 
(Y22 Y22k1 '¥33 y33k2 '¥33 y3k3 "(44) 

where 'Yii reads 'Yii = Ioke Oii �i (i = 2, 3, 4). 

32 

(2) 
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The probability of observing an arbitrary observation sequence 0 of length N, with 
its initial part (of length� 1) in the set 022, the center part (of length� 2) in 033, and 
its final part (of length � 1) in 044, reads 

(3) 

where 0 runs though all sequences of length N, i.e. the summation in the right-hand 
side is over all cases of formula (2) where ki + 1 + k2 + 2 + k3 + 1 = N with ki � 0. 
However, this sum can be interpreted in a different way, viz. as the coefficient of XN in 
the Taylor expansion around X = 0 of the following rational function F(X): 

where, according to the tied emissions, '¥12 = '¥22; '¥23 = '¥33 = y34; '¥4 4 = '¥47· 
Expression ( 4) itself can in tum be interpreted as the most general transfer function of 
the upper branch of the 7-state, 12-transition PLU without tied emission pdf's, in 
which the old transfer functions corresponding to individual transitions % X have been 
replaced by the extended versions %"'Yij X. 

This derivation explains steps 1, 2, 3 and 4 of the scheme. Step 5, the 
normalization, is necessary in order to evaluate the probability of an arbitrary 
observation sequence with, in the tied case, its initial part in the set 022, the center part 
in 033, and its final part in 044, of having an overall length equal to N, more 
specifically, the probability 

P({length(O) = N} I {0 e 022 033 044} & A.)= 

{coefficient of XN in Pnorm(X)} 

Step 5 is based on Bayes, as well as the observation that the number F(l) denotes 
the probability of an observation sequence of arbitrary length to have its initial part in 
the set 022, the center part in 033, and its final part in 044: 

{coefficient of XN in P norm(X)} = 

P({length(O) = N} I {0 e 022 033 044} & A.) = 

P({length(O) = N} & {O e 022 033 044} I A.) I P({O e 022 033 044} I A.) = 

P({length(O) = N} & {0 e 022 033 044} I A.) I F(l) = 

{coefficient of XN in P(X)} I F(l) 

where we used equation (3) and the generating-function interpretation in the last step. 
As a consequence, Fnorm(X) = F(X)/F(l), which is step 5 of the algorithm. 
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3. Conclusion 

In this paper, we studied a possible extension of a previous algorithm described in 
ten Bosch (1991). That previous algorithm provides an optimal PLU (topology 
including transition probabilities) for modelling a given duration probability density 
function. The emission probabilities have not been taken into account. 

The previous theory does not cope with details found in observed data. First we 
show that substantial differences may exist between the actual transition probabilities 
and the predicted ones. This was shown in the case of 13 Dutch vowels, by comparing 
the REXY data and the predicted values. 

Next, a theoretical extension has been proposed in order to interpret these 
differences by considering the emission pdf' s. It appears that this extension is genuine 
in the sense that it is compatible in all cases in which the old approach is applicable. 

From the structure of the forward algorithm and the proposed theoretical extension, 
it follows that knowledge of the duration pdf is not sufficient to explicitly evaluate the 
transition probabilities as well as the emission probabilities within one PLU. In the 
equal-pdf case, the transition probabilities can be evaluated. In the general case, the 
duration pdf only specifies a subset of feasible PLU' s. By using the extended theory, 
the precise structure of this PLU-subset is known. 

In the future, this study will be extended to more segments, viz. all 39 segments 
used in the REXY-system. Moreover, a study of systematic deviations from the case 
where a12, a33 and '44 play a more symmetric role is in preparation. In particular, we 
will study the results of an HMM training session of a speech database in reversed time. 
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