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1 INTRODUCTION

In current speech recognition research the use of hidden Markov models becomes more
and more successful. However, for those who know little or nothing about (hidden)
Markov models, no accessible introduction exists to our knowledge. What is a Markov
model? How can Markov models be used as recognizers? Why is a hidden Markov
model hidden? In this article an attempt has been made to answer these questions step
by step, using numerical examples to clarify the algorithms that are presented.
The text has been divided in two major parts. In the fIrst part the theory of Markov
models is presented. To increase the readability of this part no references are given;
instead we have included a list of recommended literature. In the second part the
application of hidden Markov models to speech IS demonstrated in a simple recognition
task with ten Dutch digits.

2 MARKOV MODELS

2.1 Some remarks about probabilities

For a proper understanding of Markov models two basic manipulations with
probabilities are of major importance: multiplying and adding. We will give an example
to illustrate the difference between addition and multiplication of probabilities. How do
we calculate the probability that the total score, resulting from throwing two unbiased
dice, is exactly 8? There are 62 = 36 possible combinations of dice numbers that may
appear. Each of these combinations has a probability of 1/6·1/6 = 1/36 (=multiplication).
There are 5 combinations that lead to a total score of 8: (2,6), (3,5), (4,4), (5,3), (6,2).
Therefore the required probability is 1/36 + 1/36 + 1/36 + 1/36 + 1/36 =5/36 (=addition).
This means that 5 paths out of the possible 36 lead to the desired result, a notion that is
frequently used in the rest of this paper.

2.2 Introduction to Markov processes

Suppose you want to make a contribution to a cleaner environment. Instead of going to
work with your car every day, you decide to take the train every now and then based on
the following scheme. For the first day you toss a (fair) coin. If head appears you take
the train, else you go by car. For each of the following days you will take the train if
you went by car the previous day, unless a "5" or a "6" appears when you toss a die (a
probability of 2/6) in which case you drive again to work. If, however, you went by
train the previous day'you will drive your car, unless a "6" appears when you toss a die
(a probability of 1/6) in which case you will take the train again. This scheme can be
modelled in the Markov chain of figure 1.
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1t = (112 , 112)
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2/6

52
(car)

Figure 1. Example of a Markov chain applied to a 'travelling scheme' (see text).

A Markov chain is a stochastic process, whose outcome is a sequence of T observations
0(1), 0(2) O(T) that satisfy the following assumptions:

1. Each observation belongs to a finite set of N states { 51, 5z, .... , 5N }. If the
outcome at time t is 5i, then we say that the system is in state 5i at that time.

2. Any observation depends only upon the immediately preceding observation and not
upon any other previous observation. For each pair of states { 5i, 5j } aij denotes
the probability that 5j occurs immediately after 5i occurs.

The numbers aij, called the state transition probabilities can be arranged in a matrix

A
(

all al2 al3 alN)
aZI aZZ aZ3 aZN

= ~~~ ~~~ ~~~ ::: ::: ~~~
aNi aNZ am . .. .. . aNN

called the transition matrix, where N is the total number of states.
The initial state probability distribution, i.e. the probability distribution when the
process begins (t=1) can be arranged in a vector

1t = (1tI, 1tZ, 1t3, ...... , 1tN)

In our example there are two states 5 I and 5z (N=2), representing the way of travelling
to work at a certain day. This depends only on the way of travelling on the previous day
(the previous state) and the transition probabilities, which are determined by tossing a
die. The transition matrix is:

A _(1/65/6)
- 4/6 2/6

The initial state distribution in our example is determined by the coin toss:

1t = (1/2, 1/2)

What is the probability that you will drive your car on the fourth day (T=4) of your new
way of life? To answer this question you must follow each possible state sequence
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ending in state S2, calculate the probability of each path and finally add the probabilities
of all these paths. You can calculate these probabilities efficiently using an algorithm
called the forward procedure. For this procedure we define the probability ai(t) as the
probability of being in state Si at time t. Thus the vector aCt) denotes the probability
distribution at time t For our example we find:

a1(I) = 1t1
= 1/2

a2(1) = 1t2
= 1/2

because the probability of going by train or by car (being in state Sl or S2) on the first
day is determined by a coin tossing. On the second day you may be either in state S1or
in state S2. Suppose you are in state Sl on the second day. Then you may have come
from state S1 or from state S2. The probability that you were in these states at t= I you
just calculated in a(1). These probabilities must be multiplied with the appropriate
transition probabilities and the sum of the resulting probabilities is the probability of
being in state Sl on the second day. In the same way the probability of being in state S2
on the second day can be calculated. For our example the calculations are as follows:

a1(2) = a1(I)' all + a2(1)· a21
= 1/2· 1/6 + 1/2 . 4/6
= 5/12

a2(2) = a1 (1) . al2 + a2(l) . a22
= 1/2· 5/6 + 1/2 . 2/6
= 7/12

In general we can recursively calculate aCt) with the aid of aCt-I) using the formula:

N

= L ai(t-I) . aij
i=I

For our example the calculations for the third and fourth day proceed as follows:

a1(3) = a1(2)· all + a2(2)· a21
= 5/12· 1/6 + 7/12 . 4/6
= 33/72

a2(3) = a1(2)· al2 + a2(2)· a22
= 5/12· 5/6 + 7/12 . 2/6
= 39/72

a1(4) = a1(3)· an + a2(3)· a21
= 33/72· 1/6 + 39/72 . 4/6
= 189/432

a2(4) = a1(3)· al2 + a2(3)· a22
= 33/72· 5/6 + 39/72 . 2/6
= 243/432
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So the probability of driving your car (state S2) on the fourth day is 243/432 and the
probability of going by train (state S1) is 189/432.
Note that since aCt) is a probability vector the sum of its components is always 1. Those
who are familiar with matrix algebra will also notice that the vector aCt) can be defmed
as:

aCt) = It. At-1 (2)

in which At-I is the (t-l)-th power of A.

Another interesting question is: what is the most likely path through the states or in
other words what is the most likely observation sequence? In our example there are two
states S1 (train) and S2 (car). If we look at the first four days the number of possible
observation sequences 0(1), 0(2), 0(3), 0(4) is 24. Which of these 16 sequences is
most likely to occur? This question can be solved with the Viterbi algorithm which finds
the single best path with the highest probability based on a dynamic programming
method. We define oj(t) as the best score (highest probability) at time t along a single
path that ends in state Sj- This score can be recursively calcnJated with the formnJa:

= max (Oi(t-I). aij )
19~

(3)

The Viterbi algorithm is similar to the forward procedure. However, a maximization
over previous states is used instead of the summing procedure used in the forward
calculation. The optimal path can be found by backtracking if we store the index i of the
Oi(t-I) that maximizes OjCt) (according to formula (3» in a vector. This vector 'Jfj(t) is
simply a pointer to the 'best' preceding state Si.

'Jfj(t) = argmax (Oi(t-I) . aij )
19~

(4)

The calculations for our example will clarify this backtracking strategy (the highest
probability Oi(t-I) . aij has been underlined for each state in each of thefour time steps).

01(1) = 1t1
= 1/2

02(1) = 1t2
= 1/2

= max [01(1)· all, 02(1)· a21]
= max [ 1/2 . 1/6, 1/2 ·4/6 ]
= 4/12

= max [01(1)' al2, 02(1)' a22]
= max [ 112 . 5/6, 1/2 . 2/6 ]
= 5/12

= max [01(2)· all, 02(2) . a21 ]
= max [ 4/12 . 1/6, 5/12 ·4/6 ]
= 20n2
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02(3) = max [ l'iI (2) . al2, 02(2) . a22 ]
= max [ 4/12 . 5/6, 5/12 . 2/6]
= 20n2

= max [01(3)' aU, 02(3)' a21]
= max [ 20m· 1/6, 20m· 4/6 ]
= 80/432

'V2(3) = 1

02(4) = max [01(3)· al2, 02(3)' a22]
= max [ 20m· 5/6, 20m· 2/6 ]
= 100/432

'V2(4) = 1

At the final time step we find that 02(4) has a higher probability than 01(4). This means
that the optimal path must end in state S2. In 'V2(4) we find the previous optimal state
namely S1. so we must continue our backtracking search in 'Vl(3). In 'Vl(3)our trace
goes to state S2 and in 'V2(2) to state SI. The optimal state sequence is therefore SI, S2,
S I, S2 which corresponds to the observation sequence train, car. train, car; this
observation sequence is most likely to occur. Note that only at the final time step we
know where the optimal path ends, so in order to be able to trace back the optimal state
sequence, we are obliged to store the pointer to the optimal preceding state for all states
starting at t=2.
Before we proceed with the next paragraph we will give you another example of a real
life process that can be modelled with a Markov chain, namely a 'weather forecast'.
Suppose you consider only three types of weather: sunny, rainy and cloudy. What is
the probability of weather type 'X' tomorrow if today weather type 'Y' occurs? In this
restricted way the problem can be modelled in a Markov chain with three states (weather
types). The transition probabilities can for instance be calculated with the weather
statistics from the last 50 years,

2.3 Recognition with Markov models

Consider the Markov chain of figure 2a. Suppose you are given a red ball each time the
system is in state S1, a blue ball if it is in state S2 and a yellow ball if it is in state S3.
The Markov model of figure 2b has a different initial state distribution and a different
transition matrix, but also for this model state S1 is associated with a red ball, state S2
with a blue ball and state S3 with a yellow ball.

Both systems are able to generate the following observation sequence:

0(1..6) = RB YR YR

We may ask ourselves which model is more likely to generate this sequence: model2a
or model2b? This question can be simply answered by looking at the probability of this
observation sequence, given the model. We will denote this probability as P(OIA); 0
stands for the observation sequence and Afor the Markov model. This probability for
model 2a and model 2b is:

P(OIAl) = 0.2· 0.6 . 0.8 . 0.6 . 0.2 . 0.6
= 0.006912

P(0IA2) = 0.1·0.1·0.1·0.4·0.2·0.4
= 0.000032
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0.2

1t = ( 0.2 , 0.5 , 0.3 )

0.1 0.7

1t = ( 0.1 , 0.3 , 0.6 )

0.8

0.1

(a)

0.5

(b)

Figure 2. Two concurring Markov models used for recognition.

It will be clear that model2a is more likely to generate this observation sequence. If on
the other hand we look at another observation sequence

0(1..6) = RRYYYB

and calculate the same probabilities for each model

P(OIA1) = 0.2·0.2·0.2·0.1 ·0.1 ·0.3
= 0.000024

P(OIA2) = 0.1 ·0.7 . 0.2 . 0.5 . 0.5 . 0.1
= 0.000350

we find that model 2b is more likely to generate the observation sequence. This is not
surprising, because a closer look at the transition probabilities of the two models should
convince you that model 2a has a tendency to constantly change colours in an
observation sequence, whereas model 2b has a tendency to produce long strings of one
colour. Although P(OIA) actually gives the probability of generating the observation
sequence, we may interpret PCOIA1) > P(OIA2) as a recognition of the observation
sequence by model 2a and P(OIA2) > PCOIA1) as a recognition of the observation
sequence by model 2b. From this point of view model 2a is better at recognizing
observation sequences in which the colour changes a lot and model 2b is better at
recognizing sequences in which long strings of one colour occur.
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It will be clear that the probabilities P(OIA) may become extremely small, especially if
the observation sequence becomes longer or if the observation sequence is very unlikely
for the model. To avoid underflow when a computer is used in the calculations it is
better to calculate the logarithm of P(OIA) which can be done by summing the
logarithmic transition probabilities since log (x.y) = log x + log y. A more elaborate
discussion of this scaling problem is given in paragraph 3.6.

2.4 Training of Markov models

Now that we have seen how Markov models can recognize a sequence of observations,
the next question is of course how do we obtain such Markov models? Imagine that
there is some real life stochastic process that produces a sequence of red, blue and
yellow balls. The sequence of colours is not at random, but it is constrained by some
specific stochastic rules which we do not know. Furthermore we can obtain as many
observation sequences as we like. How do we construct a Markov model from some of
these observation sequences, that we will call the training set, so that we can recognize
other observation sequences that originate from the same stochastic process? Suppose
we have obtained the following training sequence:

0(1..30) = Y R R Y Y Y Y B B B R R R B B Y Y Y B B B Y Y R R R B B R R

Since there are three colours we choose a Markov model with three states, similar to the
ones of figure 2. The transition probabilities can be estimated from the training sequence
in the following steps:

1. Count the number of transitions Fij(T-I) from state Si (Ig~ to state Sj (lS;j:sN)
for T-I observations in the training set (for the last observation there is no
transition). .

2. Count the total number of transitions Fi(T-I) from each state Si (lg~. This
amounts to counting the number of times state Si occurs (use also T-I observations
in this step).

3. Estimate aij as the number of transitions from step I divided by the number of
transitions from step 2.

In a formula this can be expressed as:

1iij
= Fij(T-I)

Fi(T-I) (Sa)

In the following matrix the number of times each possible transition occurs is given
(step I):

h

R
R 6
B 2
Y 2

B
2
6
2

Y
1
2
6

7



The row sums give the total number of transitions from each state (step 2). These row
sums are 9, 10 and 10 respectively. In order to get a proper transition matrix we must
divide each cell of this matrix by its row sum (step 3):

A
_ (0.67 0.22 0.11)
- 0.20 0.60 0.20

0.20 0.20 0.60

Since the observation sequence starts with a yellow ball the initial state distribution is
estimated as

1t' = (0, 0, 1 )

In general the initial state distribution is estimated as

1t'i (5b)

It is obvious that a better estimation of the transition probabilities is obtained if the
number of observations in the training set increases. Instead of training the Markov
model with one long sequence of observations, we can also train it with a number of
shon sequences. More sequences will give the opportunity to make a better estimation
of the initial state probabilities by counting the number of times the observation
sequences start with a cenain colour and dividing by the total number of sequences.
There are two possible ways of averaging the aij's of separate observation sequences;
both satisfy the stochastic constraint that the aij's summed over j (l:::;j~ are 1. The
first possibility is:

W

" F:'.(T-l).£..J IJ

~ =~ ~

L Fr(T-I)

v=l

where W is the number of observation sequences. F~(T-l) denotes the total number of
transitions from state Si to state Sj in observation silluence v and Fr(T-1) denotes the
total number of times state Si occurs in observation sequence v. The second possibility
is:

(6b)
v

. F· (T-l)
1

v=l

W

L
F:'.(T-l)

IJ1
=W1l'ij

Consider an observation sequence with 100 occurrences of state Si and 10 transitions
from state Si to state Sj, and another observation sequence with 2 occurrences of state
Si and 1 transition from state Si to state Sj. According to fonnula (6a) aij is calculated as
(10+1)/(100+2) = 11/102 and according to fonnula (6b) as 1/2· (l0/100 + 112) = 3/10. Since
the observation sequence with 100 occurrences probably gives a more reliable estimate
of ai} fonnula (6a) that weighs frequencies is preferred (11/102 is closer to 10/100 than
3/10).
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The formula for the initial state distribution becomes:

It'i

w

=~ I,Fr(l)
v=l

(6c)

0.85 0.85 0.85 0.85 0.85 0.85 0.85 '..
0.10 0.10 0.10 0.10 0.10 0.10 0.15

S2 S3 S4 S5 S6 S7

0.05 0.05 0.05 0.05 0.05 0.05

Figure 3. A left-to-right Markov model.

2.5 Left-to-right Markov models

Before we proceed with a discussion of hidden Markov models, there is one more topic
that needs some attention, namely that of left-to-right Markov models. So far we have
considered models in which it is possible to reach any state from any other state. These
models are called ergodic models. The Markov model of figure 3 is a left-to-right
model. This model has a distinct temporal structure in which a low state index always
precedes a higher state index. Most of the transition matrix of a left-ta-right model is
thus filled with zeros. If we choose agg to be 1.0, state Sg is an absorbing state, because
the system cannot get out of this state once it has been entered. For a further discussion
of agg see paragraph 4.2.2. Left-to-right Markov models are very useful to model time
varying signals such as speech.

1t = ( 0.5 , 0.5 )

bl(R) = 0.8
bleB) = 0.1
bl(Y) =0.1

0.4

Sl

0.6

0.8

b2(R) = 0.3
b2(B) = 0.4
b2(Y) = 0.3

0.2

L

Figure 4. A simple hidden Markov model with two states and three observation symbols
(colours).
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3 HIDDEN MARKOV MODELS

3.1 Introduction to hidden Markov models

Suppose we want to model a stochastic process that generates 100 colours instead of 3
as in paragraph 2.3 (in chapter 4 we will actually use 64 different 'symbols' for the
recognition of Dutch digits). With a 'normal' Markov model we would need 100 states,
one for each colour. To obtain such a model we would have to train 10000 (002)
transition probabilities, which would require an enormous amount of training data. The
number of states can be drastically reduced with the use of hidden Markov models
(HMM's), although at the cost of a greater arithmetic complexity as we will see.

Consider the Markov model of figure 4. This model has two states SI and S2.
However, the states are not associated with one coloured ball any more, but with an urn
that is filled with an infinite number of balls. There are red balls, blue balls and yellow
balls, each with a certain probability of occurrence and with a different probability
distribution for each state (see figure 4). This observation symbol probability
distribution can also conveniently be arranged in a N x M matrix, in which N denotes
the number of states and M the number of observation symbols (colours in our
example):

B =
(

bll bI2 b13 ... bIM J
b2I b22 b23 ... b2M
b3I b32 b33 ... b3M
... ... '.. "'.. ..,
br<I br;2 br;3 ... br;M

called the observation matrix. An observation symbol probability is also commonly
expressed as bj(k) or bj(O(t)) which denotes the probability of observing symbol k
(l~) or O(t) in state Sj- For the Markov model of figure 4

B _ (0.8 0.1 0.1)
- 0.3 0.4 0.3

An observation sequence is generated in the following way:

1. Choose one of the states (urns) according to an initial state distribution n.

2. Take a ball from the selected urn and record its colour.

3. Choose a new state (urn) according to the transition probability distribution.

4. Go back to 2, unless the required number of observations has been reached (t=n.

The observation sequence contains no 'visible' information about the state sequence,
since each colour could have been generated by any state. In other words the state
sequence is hidden. This type of model is therefore called a hidden Markov model.
Because each state of a hidden Markov model can accommodate all the observation
symbols, we are in principle free to choose the number of states that we want to use for
modelling a real life process (contrary to the Markov models of the previous chapter that
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needed one state for each observation symbol). We may for instance model the
stochastic process mentioned at the beginning of this paragraph with a 5-state hidden
Markov model, which requires the training of 25 (52) transition probabilities and 500 (5
. 100) observation symbol probabilities, a total of 525 which is considerably smaller
than the 10000 transition probabilities needed for the Markov models of the previous
chapter. The problem of choosing the proper number of states for a hidden Markov
model will be discussed in chapter 4.

3.2 Recognition with hidden Markov models

If we want to recognize observation sequences with hidden Markov models there are
two questions of interest:

1. How do we calculate the probability of the observation sequence given the model
P(OIA)?

2. What is the most likely state sequence given the observation sequence and the
model?

In principle the calculation of P(OIA) is sufficient for recognition. However, we can also
use the probability of the most likely state sequence to recognize an observation
sequence. Whereas P(OIA) is more accurate, the probability of the most likely path is
easier to calculate. For speech recognition both types of probabilities are used.
To answer the first question we must calculate the probability of each possible path that
accounts for the T observations 0(1..T) and add the probabilities of all these paths. For
this purpose we can use the forward procedure as described in paragraph 2.2 with a
slight adjustment to incorporate the observation symbol probabilities. We now defme
ait) as the joint event that O(1..t) are observed and the system stops in state Sj at time
1. The recursion formula for aj(t) becomes:

aj(t)

N

= .I.(ai(t-l) . aij) . bj(O(t))
1=1

(7)

in which bj(O(t)) is the probability that OCt) (which represents one of the observation
symbols) occurs in state Sj. The probability of the observation sequence given the
model is calculated as

N

P(OIA) = I. ai(T)
i=l

(8)

which is the sum of all a's at the final step T. To fix ideas we will illustrate the
calculations for the hidden Markov model of figure 4 and the observation sequence

0(1..3) = RB Y
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The u's are calculated as follows:

Ul(l) = 1t1 . bl(R)
= 0.5·0.8
= 0.4

U2(1) = 11:2' b2(R)
= 0.5 . 0.3
= 0.15

ul(2) = [ul(l)· all + U2(1)· a21] . bleB)
= [0.4·0.4 + 0.15 . 0.8 ] . 0.1
= 0.028

U2(2) = [ul(l)· a12 + U2(1) . a22] . b2(B)
= [0.4· 0.6 + 0.15 . 0.2 ] . 0.1
= 0.108

ul(3) = [ul(2)· au + U2(2)· a21] . bl(Y)
= [0.Q28· 0.4 + 0.108 . 0.8 ] . 0.1
= 0.00976

u2(3) = [ul(2)· a12 + U2(2)· a22] . b2(Y)
= [0.Q28· 0.6 + 0.108 . 0.2 ] • 0.3
= 0.01152

Therefore

P(OIA) = ul(3)+ u2(3)
= 0.02128

is the probability of this observation sequence given the model of figure 4. Note that the
sum over t (l$;t:sT) for Ui(t) is no longer equal to 1 due to the second probabilistic layer
of bj(k)'s (compare paragraph 2.2). .

To answer the second question we can use the Viterbi algorithm as described in
paragraph 2.2 with the same adjustment as for the forward procedure to incorporate the
observation symbol probabilities:

OJ(t)

'JIW)

= max (Oi(t-l). aij ) . bj(O(t))
1$;i$;N

= argmax (Oi(t-l) . aij )
1$;i$;N

12
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The single best path with the highest probability for our example is calculated as
follows:

01(1) = ltl' bl(R)
= 0.5·0.8
= 0.4

02(1) = lt2' b2(R)
= 0.5·0.3
= 0.15

01(2) = max [01(1)' an, 02(1) . a21] . bl(B) \jfl(2) = 1
= max [ 0.4 .04,0.15·0.8] . 0.1
= 0.016

~(2) = max [01(1)' al2, 02(1)· a22] . b2(B) \jf2(2) = 1
= max [ 04 . 06,0.15 . 0.2 ] . 0.4
= 0.096

01(3) = max [01(2)· an, 02(2)· a21] . bl(Y) \jfl(3) = 2
= max [ 0.016 . 004, 0 096.08] ·0.1
= 0.00768

02(3) = max [01(2)· al2, 02(2)· a22] . b2(Y) \jf2(3) = 2
= max [ 0.016 . 0.6, 0.096 . 0.2 ] . 0.3
= 0.00576

Since 01(3) > ~(3) the optimal path ends in state SI. According to \jfl(3) our trace goes
back to state S2 and in \jf2(2) to state SI. The single best path with the highest probability
given the observation sequence R B Y is therefore the state sequence SI, S2, SI.

3.3 Training of hidden Markov models

(lOa)'ll"ij

How do we train the hidden Markov models? The simple procedure of estimating
transition probabilities by counting frequencies from paragraph 2.4 cannot be used,
because the observation sequence is no longer associated with only one state sequence.
Furthermore the B-matrix has to be trained as well. However, if we replace frequencies
of occurrence by probabilities, the principle of paragraph 2.4 is still valid. The
following estimates are proposed for aij. bj(k) and lti:

Probability of being in state Si
and making a transition from state Si to state Sj

= Probability of being in state Si

trj(k)
_ Probability of being in state Sj and observing symbol k
- Probability of being in state Sj (lOb)

= Probability of being in state Si at t = 1 (lOc)
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S. 1J=

Si=2 S. 2J=

Si=3 ~2j
ai2--D S. 3J=

a 3j a i3
S. S.

J 1

Figure 5. Illustration of one step of the forward procedure and one step of the backward
procedure.

In order to calculate these probabilities we must introduce a new algorithm called the
backward procedure which is the reverse ofthe forward procedure. Whereas Uj(t) is the
probability of the joint event that 0(1..1) are observed and the system stops in state Sj at
time t, !3i(t) is the probability of the joint event that O(t+l..T) are observed and the
system stans in state Si at time t (see figure 5):

N

= r. ~j(t+ 1) . aij . bj(O(t+ 1»
J=l

(11)

In a similar way as uj(l) is initiated by the initial state distribution ~i(T) is arbitrarily
defined to be 1 for all i.
The probability of the joint event that 0(1..n are observed and the system is in state Si
at time t, which is mentioned in formula (lOc) and in the denominator of formula (lOa)
and (lOb), can therefore be defmed as

Ui(t) . ~i(t)
=

P(OIA)
(12)

The normalization factor P(OIA), which can be calculated with the forward procedure as
we have seen, makes '¥i(t) a conditional probability so that the sum of all is at time t is
1. Next we defme ~ij(t) as the probability of the joint event that O(1..T) are observed
and being in state Si at time t and making a transition to state Sj at time t+1. This
probability is mentioned in the numerator of formula (lOa) and can be calculated as
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Sij(t)
= ui(t)· ~j(t+l) . aij' bj(O(t+l»

P(OIA)
(13)

So now we can estimate aij as

'il."ij

T-l

L Sij(t)
t=1

= T-l

LYi(t)
t=1

(l4a)

In the summation T is excluded because there is no transition from the [mal step (see
par.agraph 2.3). The probability bj(k), Le. the probability that symbol k (1 ::;; k ::;; M)
occurs when the system is in state Sj, can be estimated as

lJj(k) =

T

L Yj(t)
t=1

O(t)=k
T

L Yj(t)
t=l

(14b)

Since no transitions are involved the summation in this formula is from t=l to t=T. A
reasonable estimate of the initial state distribution is the probability of being in state Si at
t=l:

It'i = Yi(l) (14c)

A closer look at the origin of the formulas (14a), (l4b) and (14c) will reveal that the
left-hand side of the equations also appears in the right-hand side. This means that we
have to use an iterative procedure to improve the model parameters. We start with an
initial guess for A, B and 11: and then we re-estimate the parameters until these values
stop changing in two succeeding iteration steps (within certain limits). Formulas (14a),
(14b) and (14c) which are used to train a hidden Markov model are called the Baum
Welch re-estimationformulas. The initial guesses for the matrices A, Band 11: can be
random choices, normalized to satisfy the constraints

N

L aij
i=l

M
L bj(k)

k=l

N

L 11:i
i=1

= 1

= 1

= 1
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An alternative initial guess conld be a uniform distribution

aij = lIN + e

bj(k) = 11M + e

lti = llN+e

(16a)

(16b)

(16c)

where e is a small random distortion. The values aij, bjCk) and lti must again be
normalized according to the formulas (l5a), (15b) and (15c).

3.4 Training with multiple observation sequences

The training of hidden Markov models with more than one observation sequence is
quite straightforward. For each observation sequence separately the ~'s and "/s are
calculated. When this is done for all observation sequences (which amounts to one
iteration of the Baum-Welch procedure), the model parameters can be re-estimated with
the following formulas (compare formulas (17a & c) with formulas (6a & c)):

'irij

o"j(k)

W T-l
v

L L ~ ··(t)1J

= v-I t-l
W T-l

v

L L 'Y i (t)

v=l t=l

W T

L L 'Yj (t)

v=l t=1

=
OV(t)=k

W T
v

L L 'Y j (t)

v=1 t=1

(17a)

(17b)

W1" v= W £- 'Yi (1)

·v=1

where W denotes the number of words.

A scheme of the entire training procedure is shown in figure 6.
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Figure 6. Scheme of trnining procedure.

3.5 Multiple symbol distributions

Before we discuss the topic of multiple symbols a remark has to be made about the
nature of the symbols. In our example with coloured balls we assumed that there were
only three distinct colours: Red, blue and yellow. Suppose the balls could have any
colour that you like. This would request an infinite data set to train the Markov models.
However, we might agree to assign each occurring colour to one of the colours red,
blue or yellow (or any other finite set of colours). The assignment could be based on
any reasonable criterion, e.g. the similarity of the most dominant frequency of the
colours. In this function the colours red, blue and yellow are called the codewords and
the total set of codewords is called the codebook. For the construction of codebooks a
technique called Vector Quantization is often used, which will be described in paragraph
4.1.3. It is also possible to model continuous observation symbol distributions (e.g.
Gaussian). However, the increased arithmetic complexity doesn't seem to outweigh the
improvement in performance of Markov models using such distributions.
Let's assume that apart from the colour of the balls, also their weight is given. With
Vector Quantization we have made three codewords for the weight-codebook of 100
gram, 200 gram and 300 gram. New balls, which have weights varying from a few
grams to a few hundred grams, are assigned to the codeword that is closest in weight.
How do we adapt the forward procedure to recognize observation sequences with
multiple symbols and how do we adapt the training formulas?
The forward procedure has to account for the joint probability that observation symbol
Ol(t) (in our example a colour) and observation symbol 02(t) (a weight) occur. In
general there may be Z different symbol distributions. The forward algorithm is
therefore adapted in the following way:
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N

Uj(t) =2:
i=l

(Ui(t-l}aij) . b IJ. (O\t)).b~(O~t))· ... ·b~(OZ(t))
J J

(18)

where b\k) denotes the probability of observing symbol k of the x-th symbol
distributIon (1~:Q;) in state S}
An alternative approach is to regard each b~(k) as a separate path, which means addition
of all bj(k)'s in formula (18). This givesJa similar problem as the one discussed for
formulas (6a) and (6b) in paragraph 2.4. Consider a hid1en Markov mOd1l with two
symbol distributions. In state Sj at time t we may have b. (k) = 0.9 and bj (k) = 0.0.
This means that the occurrence 02(t) = k is im~ossible. This impossibility can only be
expressed in the product of the probabilities b. (k); addition would unjustly lead toa
high combined probability. J
For the adaptation of the Baum-Welch re-estimation formula for aij. we must realize that
in fact each new symbol distribution adds a new observation sequence to the training
set. Therefore formula (17a) for multiple observations is also valid for multiple
symbols:

Z T-l
xL L 1; i/t)

x=l t=l
= Z T-l

xL L Yi(t)

x=l t=l

(l9a)

Since we want to determine Z different symbol distributions, each of these must be
trained separately with the formula:

oj(k)

T

L Yj(t)

t=l
OX(t)=k

= T

L Yj(t)

t=l

(l9b)

where b~(k) denotes the probability of observing symbol k of the x-th symbol
distributIon (1~:Q;) in state Sj.
For the initial probability distribution we use formula (17c) adapted for multiple
symbols:

n'i

Z

1 "" x= Z .£..J Yi (1)

x=l
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Note that in case of multiple observation seqnences the formulas (19a,b,c) have to be
extended with a summation over W observation sequences (and a multiplication with
l/W for formula (19c)).

3.6 Scaling of probabilities

It was already noted in paragraph 2.3 that the probabilities used in Markov models may
become extremely small. It would therefore be preferable to use the logarithm of
probabilities. This is easy to do if multiplications or divisions of probabilities are
involved since

log (x·y) = log x + log Y

log (x/y) = log x -log Y

(20a)

(20b)

So the transformation to logarithmic probabilities will give no problems for the formulas
in which only multiplications and divisions of probabilities occur. This is not the case if
additions of probabilities have to be calculated as for instance with the forward
procedure or the backward procedure. However, a simple solution is to use scaling
factors to.keep the probabilities within the dynamic range of the computer and then later
combine the scaling factors and the scaled probabilities to logarithmic probabilities. This
technique will be demonstrated for the forward procedure. First each lXi(t) is divided by
a scaling factor Kt before proceeding with the next time step lXi(t+1) and the scaling
factor Kt is remembered. After all scaled lXi(t)'s (1 ::; t::; T) have been calculated the
unsealed lXi(t)'s are represented by

unsealed lXi(t) = KI . K2 .... Kt . scaled lXi(t) (21a)

For logarithmic values this amounts to

10g[unscaled lXi(t)] = 10g[KIJ + log[K21 + ...+ 10g[Ktl + log[scaled lXi(t)] (2Ib)

The scaling factor we chose was the sum of all lXi(t)'s for a fixed time t.

4 MARKOV MODELLING OF SPOKEN DUTCH DIGITS

4.1 Speech pre-processing

4.1.1 Filterbank

Before adapting HMM's to speech, we will outline how the pre-processing of the
incoming speech signal is done (see first 4 blocks of figure 7). The recordings are done
with a Sennheiser MD42lN microphone. The continuous signal is low-pass filtered at
4.5 kHz (48 dB/octave), and then sampled at 16 kHz. Next a spectral analysis is
performed using a FIR-based fIlterbank, resulting every 8 msec in energy estimates for
15 output channels. For details about this filterbank see Van Alphen et al. (1988). This
filterbank has a constant bandwidth for the low-frequency region, and a 1/3 octave
spacing for the high-frequency region (roughly Bark-scaled). To remove the harmonic
structure in the lower filterbands, an fO-correction is applied using a heuristic method
(Van Alphen, 1989).

19



••• 15x 13x 1 x

micro-
anti- AD fdter- level dldt slooe Os

phone r- aliasing f- COIlver- ..
bank

frequency VQ
rule>" gon - ~~ative

13x Ix

4
dldt .::.\ slope OdS
time VQ

~ative

Ix
1 x

1 x
dldt OdEtotal energy .::.\ energy
time VQ

derivative

zo

~
Vl
i=Oo

.. .. ..
16kHz 125 Hz (8 msec frames)

Figure 7. Pre-processing of speech signal.

4.1.2 Metrics

In recognition we do not use the direct Level metric L (spectrum consisting of IS output
energy levels), but the frequency derivative of the spectrum. We will call this variable
the Slope metric S (it is a reduced form of Klatt's Weighted Spectral Slope Metric
(Klatt, 1982)). This slope metric for filterband f at time t is defined as:

= Lf+l(t) - Lf-l(t) (22)

where Lf{t) is the energy level of filterband f at time t. In this definition an implicit
smoothing of the spectrum is done. In this way we end up with a vector of 13 S-values
for every time-frame. Although this slope metric will describe the stationary part of the
speech signal rather well, it will do a bad job for transitions. For better modelling of
these transitions, we defined two metrics similar to the ones used by Lee (Lee, 1989),
namely D.S (the time derivative of the slope metric) and Lill (the time derivative of the
total Energy). These are defined as

D.Sf(t) = Sf(t+2) - Sf{t-2)

Lill(t) = E(t+2) - E(t-2)

3~t~T-2

3 ~t~T-2

(23)

(24)

where T is the duration of the utterance, and E(t) the total Energy at time t
With the 15 energy levels of the filterbank: as base, we end up with the following
metrics for modelling:

S = Slope
D.S = D. Slope
D.E = D. Energy

: frequency derivative oflevel metric 13 values
: time derivative of slope metric 13 values
: time derivative of total energy 1 value

Figure 7 shows that we started with 16000 data points per second, being the sample
frequency of the speech signal. With the three defined metrics, we have 3375 data
points per second: 13+13+I values every 8 msec. (125 Hz). Although we reduced the
data stream, it is still not suitable as input for our hidden Markov models. To achieve a
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further data reduction, we will apply Vector Quantization (VQ). This VQ yields for each
of the parameter vectors one output (observation) symbol, which has the same function
as the colours red, blue and yellow from the urn model of paragraph 3.1.
For speech, this observation is a pointer to the closest vector from the Vector
Quantization codebook. The way this codebook is obtained will be outlined in the next
paragraph.

4.1.3 Vector Quantization

Vector Quantization is a technique that reduces a large number of n-dimensional data
points to a small set of n-dimensional vectors called the codewords; the total set of
codeword vectors is called the codebook. A widely used Vector Quantization, that is
based on a very simple clustering algorithm, consists of the following sequence of
steps:

1. Choose the number of codewords you want to use.

2. Start with an initial guess of the codewords.

3. Allocate each data point to the nearest codeword on the basis of a distance measure.

4. Compute new codewords as the centroids of each codeword cluster of data points.

5. Alternate step 3 and 4 until no data points change their cluster membership at step 3.

It can be shown that this iterative clustering process converges to a locally optimum
quantizer (Anderberg, 1973). A variation on this method is to update the centroids of
the losing and gaining clusters each time a data point is allocated to a new codeword
cluster. However, the set of codewords constructed in this way will depend on the
sequence in which the data points are processed. Since it is not clear how this will effect
the clustering, we preferred to keep the codewords fIxed for a full cycle through the data
set.
For the initial guess of our codewords we applied a hierarchical clustering method to a
small random subset of our data. The hierarchical clustering was the Ward method that
merges at each stage two clusters on the basis of a variance criterion. The details of this
procedure can be found in Anderberg (1973).
For each of the three codebooks (S, dS and dE) we wanted to make 64 codewords, a
number that was used by Rabiner et al. (1983) in a similar digit recognition experiment
We started with 12500 data points (125 frames x 10 digits x 10 repetitions).,A random
set of 1000 data points from these data was used for the initial guess of the 64
codewords. The distance measure we used was the Euclidean distance.
In future research we plan to compare this Vector Quantization technique with other
methods.

4.1.4 Summary of pre-processing

If the performed pre-processing (shown in fIgure 7) is considered as one block, the
input is the (acoustic) speech signal, and the output is for every metric one observation
(with a frame rate of 8 msec.). These observations are the observation symbols of the
hidden Markov models of paragraph 3.1. If we consider all three metrics, there will be
three observation sequences:
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OS~l..T)
all (1..T)
oL'.E(l..T)

= pointer to the closest vector in the slope codebook
= pointer to the closest vector in the Ll slope codebook
= pointer to the closest vector in the Ll energy codebook

From now on, superscripts S, LlS and LlE will denote that the variable corresponds to
one of the three metrics: slope, Ll slope and Ll energy respectively.

4.2 Hidden Markov models

4.2.1 Introduction

As an example of modelling speech with HMM's, we used the ten Dutch digits as
vocabulary, and trained the HMM's for one single (male) speaker. Because we chose
words as unit, the implementation of HMM's will be straightforward. We will outline
this in the next paragraph, restricting ourselves to one metric (e.g. the slope metric).
Once we have defined the HMM's, we will show in paragraph 4.2.3 how we can
combine all metrics.

4.2.2 Word models

We created 10 hidden Markov models, one for every digit-word. The type of model we
used was the left-to-right model with 8 states, only allowing self-state loops and
transitions to a higher state-index {see figure 3). In this way the transition matrix A has
8 states (N=8). In general there are no clear criteria to choose a certain number of states
for a model (Rabiner, 1983). We chose 8 states for the following reasons:

the longest words contained 5 phonemes. Ideally we would expect that each state
describes one phoneme.
2 states for the silences surrounding the word. A huge advantage of modelling
silences is that in the training phase no segmentation has to be done.
one end state with no transition probabilities. This means that agg is equal to 0.0 in
figure 3. In this way we avoid an absorbing state that tends to administer the
duration inadequately.

The training words were spoken one by one (isolated words), preceded and followed
by a silence. The duration of the spoken digits was always one second (including the
silences), resulting in time t going from 1 up to 125 (=T).
The Vector Quantization yields one single observation for the slope metric every time
frame. Because we have 64 different observations (paragraph 4.1.3), the observation
matrix B has as dimensions 8 (=N) times 64 (=M).
To force the model to start in the left most state (state S1), the initial~tate distribution
vector 1t is zero for all values, except for state S1, where it is 1.

4.2.3 Multiple symbol distributions

Now that we have described how to build a hidden Markov model for the slope metric,
we must find a way to combine the three metrics we want to use. In fact, there are two
possible ways of combining the metrics (Gupta, 1987). The first one, which one we
will call word level incorporation, means that we simply build a separate HMM for each
metric. The second one, which we will call frame level incorporation, means
incorporation of the probabilities at frame level in a way described in paragraph 3.5
about multiple symbol distributions.
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4.2.4 Recognition

Once we have the 10 (trained) models A.d, one for each spoken digit d, recognition
consists of running the forward algorithm. This means that we take the 10 HMM's one
by one, and run the algorithm on the observation sequence O(l..T) (from one Vector
Quantization). These 10 HMM's will give as a result the probabilities p(OIA.d),
indicating how well the observation sequence can be explained by the model. Now we
can pick the model that has the highest probability, and score the spoken word with the
digit, that was the origin of that model.
When we want to incorporate the three different meqics slope, ~ slope and ~ energy,
the following formula has to be used for word level incorporation:

(25)

This amounts to multiplying the probabilities of the models for each metric.
Incorporation at frame level is described in paragraph 3.5. The forward algorithm of
formula (18) becomes in case of the three metrics slope, ~ slope and ~ energy:

N

aj(t) = L(ai(t-I)-aij) . b~ (OS(t»'bfS(O~S(t»)-bfE(O~E(t» (26)

i=1

Running this modified algorithm yields the total observation probability p(OIAct).

4.2.5 Initialization and training

About the initialization of the hidden Markov parameters A, Band 1t, the following
choices were made (see also paragraphs 3.3 & 4.2.2):

A according to the left-to-right model of figure 3.
B uniform as indicated in paragraph 3.3 (withont random distortion). BeGause we

have 64 different observation symbols, this results in a value 1/64 for every bj(k).
One remark there has to be made about the "silent-states". Because they occur in
every word twice, we decided to' adjust by hand the initial estimates. This was done
by looking at the observation symbols in silences, and picking the 5 m9st frequent
observation symbols (k). These observation symbols bj{k) then got the value 1/10
(a normalization according to the formula (15b) has to be performed).

1t the initial state distribution is zero for all values, except for state S I, where it is 1.
In the same way we modified the backward algorithm to force the model to end in
the right most state SN. This means that 13j(T) is initialized to zero, except 13N(T),
which gets the value 1.

Now that we have an initial estimate, we can follow the scheme of figure 6 by
(iteratively) training with multiple Observations of a specific digit d. In our case we had
a training set of 20 tokens for every digit.
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(27a)= T-l

L(r~ (t) + '1S
(t) + '1E

(t»)

t=l

"irij

In case of word level incorporation an HMM for each metric was trained separately. In
case of frame level incorporation of the three metrics slope, tJ. slope and tJ. energy, the
re-estimation formulas from paragraph 3.5 are applicable in a straightforward way (see
formulas (19a, b, c»:

T-1

L(~~(t) + ~~S(t) + ~~E(t»)

t=l

triCk)

T

L rj(t)
t=l

OX(t)=k
= T

L rj(t)
t=l

(27b)

where superscript x denotes one of the three metrics S, tJ.S and !:>E.

jt"i (27c)

4.3 Testing and results

Testing was done with 10 new realizations per digit, insuring independence of the
training- and test-set. In table 1 the results of all performed tests are gathered. Whenever
an HMM not corresponding to the digit spoken in a test word had the highest
probability, this was counted as an error.
To stress the importance of the amount of training data for HMM's, we varied the
number of training words used to train a specific HMM. Performance is very poor if we
only use 1 or 2 training words, while 20 training words seem to be sufficient.
All different metrics (codebooks), and their possible incorporation, were used to create
HMM's. Because we had 20 training words per digit, we had to choose which ones to
use whenever we wanted to train with less than 20 words. In this case we ran the
training a few times for different subsets of training words, anfl then selected the subset
of words that performed worst. From the results it can be seen that the slope- and tJ.
slope metric separately already perfoITIl well, while the tJ. energy metric, only describing
the envelope of the energy performs quite poorly.
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Table 1. Error rate for the recognition of 10 spoken Dutch digits in isolation, for different
metrics and varying number of training words (test set size =100).

number of metric / codebook
trainin 0" words se"arate codebooks multinle codebooks

L1 L1 word frame
slone slone enerlYV level level

1 28 % 61 % 89% 26% 21 %
2 8% 30% 82% 9% 7%

10 3% 12% 64% 1% 0%
20 1% 5% 21 % 0% 0%

5 CONCLUSION AND FUTURE RESEARCH

Hidden Markov models can successfully be applied to speech recognition. At least for
the simple task of speaker dependent isolated digit recognition, error .rates close to zero
can be achieved. As a next step the HMM's of the 10 Dutch digits were connected in a
parallel network, that was able to recognize these 10 digits in a continuous speech task.
As these preliminary results seem very promising, further research will focus on
continuous speech recognition based on HMM's of phonemes. These models will then
be used to recognize speech in a system, that will be capable of automatic banking and
of supplying information on the banking facilities.
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