The development of the speech discrimination test described below must be regarded as part of a larger framework of a test series "Diagnostic Investigation of Languagg Acquisition" which will appear at a later stage. The need was felt have a test at our disposal with which a quick screening could be carried out concerning the understanding of speech. The following investigation must not be taken other than an account o: the work done to get more experience of one $2 s_{1}$ - t of hearing. Naturally a definite pronouncement at this stage of t'ir specific investigation would be premature.

Speech Discrimination

Development of a Test

by M.C. Dinger.

Introduction.
1.1 In present-day education an increasing use is made of language Laboratories. Jiut such aspects as adaptation of the wethod to the participar s and fithess or aptitude of the participants to such methods of education have been Lithia investigated. In view of this a plan arose in 1968 to devejop a series of tests which were to give an insight into the characteristios of students (van Hexpt, 1973). With the help of the results of these tests, combined with other data as, for instance, study resulis, it should be possible to mike use of language labonatories more effectively.

2.0 Purpose of the investination.

2.1 Within the Iramework 1 ff the ciagnostic investigation concerning Ianguage acquisition ${ }^{*}$, now in progress at the Institute of Phonetic
*) een pilotainvestigation, Diagnostisch Onderzeek Taalverwerving'. (Psychology per Computer, a PiLot Inveistigation, Diagrostice Investigation Language Acquisition); by L.W.f. van $\dot{\text { Lerpt, Institu*a cf phonetic }}$ Sciences, 1973, publication 40, Ansterdam.

Sciences, it was of great importance to develop a test, with which the hearing capacity of students making use of language laboratories can be determined. A second motive for designing such a test was the point that many investigations carried out at the Institute of Phonetic Sciences incorporate listening experiments which, in view of the validity of the results have to make use of subjects whose hearing is unimpaired. In either case the stress falls on the capacity of hearing speech-sounds. Therefore no use was made of pure tones as testing material. The aim of the development of this part of the investigation was designing a speech discrimination test which was to satisfy the following conditions:

1. The test should be made so that groups of subjects could be tested at the same time
2. The results were to be automatically processed.
3.0 Design.
3.1 Two batches of forty one-syllable tape-recorded words to be presented via head phones to the testees.

The test to consist of two parts.
Part I 40 meaningful monosyllables; divided into 4 groups of 10 monosyllables
Part II 40 meaningless monosyllables, divided into 4 groups of 10 monosyllables.

The time interval between monosyllables: 4 seconds, between groups: 12 seconds and between Parts I and II: 24 seconds. The volume varied per group of 10 items. The level of loudness for Parts I and II run parallel and are chosen in such a way that people with normal hearing will have a 100% correct score for the first of 10 items, see 6.3, (i.e. monosyllables presented loudest). The lowest level of loudness will be auch that even a person with normal hearing will not understand all the words correctly, or at any rate, will do so with great difficulty.
3.2 The responses are multiple choice. For each stimulus the listener bas a choice of three, which are presented on forms for automatic scoring. For these automatic scores use is made of an adapted Standard IBM 557 form. The order in which the three response possibilities are placed on the scoring forms is fully randomized.

The procedure during the test and the scoring instructions are given on printed forms.

4.0 Definition of the Problem.

The data resultingfrom the test would have to decide the possibilities and the usefulness of the discrimination test in the shape presented here. Our $\mathrm{In}^{n-i n}$ interest centered on the following points.
4.1.0 The usefulness of the speech material and the alternatives given. a) The measure of discrimination resulting from the 80 stimuli offered. b) The measure of equality of the alternatives.
4.2.0 Delimination of the level of loudness where an optimum of discrimination occurreá between testees.
4.3.0 Deciding the degree and the type of loss of hearing. As a result of the wrong responses an evaluation would be attempted of the degree of loss of hearing and trie type of this loss.
a). The degree of loss of hearing could be based on the level of loudness with which a wrongiy scored response was presented b). The type of loss of heariag could be based on the choice of the alternatives of the stimulus presented. (see 5.3.2).

```
4.3.1 Assessment of the validity of the teat. A comparative examination of hearing would be necessary in the shape of a tone audiogram. \(A\) number of testees with the largest and with the smallest number of mistakes, and a number from the median group would receive a request to come and have their hearing tested individually.
4.4.0 Testing of the following null hyfothesis. \(H_{0} \quad A\) speech discriminationtest with meaningful test material and a test with meaningless material presented under identical conditions show no sjgn. icant difference.
Data presented in literature on the subject suggest that even a person with normal hearing always shows decreased discrimination wher the stimulus material consists of nonsense-syllables (logotomes).
```


5.0 Material.

5.1 Part I

The starting point for the meaningful speech material was the list used at the Professor H. Burger school in Amsterdam, the so called P.H.B. list. From it those monosyllables were chosen which produced the most favourable alternatives. (see table I and II). The right choice of alternatives is an essential part of this investigation as the investigation is conducted on the basis of forced choice scoring.

5.2 Part II

The material for the second part of the investigation was designed in collaboration with Miss J.M. van der Stelt, also of the Institute of Phonetic siciences. It consists of mearingless monosyllables. These have been constructed in sucin a way that the same vowels have been used equally often in parts I and II. In this way an attempt was made to \&eep both parts as equal as possible. (see tables I and II).

5.3.0 The Alternatives.

The alternatives for both parts kave been formad by making use of the stimulue as before. (see taulees I and II).

1. The alternatives have been formed by chanfing ome phoneme in comparison to the stimulus offerere.
2. This phoneme was crosen jx buch a way that an endeavour could be made to estabiish the type of deafness (low- or high-tore deafness) from the analysis of the types of mistakes made by tise subject. For instance in kart I an item was subjected for judgment: bier [bir]. The testee could choose between: mier-bier-buur. In transcription [mir-bir-byr].
The mixing up of [i]/[y] might point to bieh-toxe deafness; the mixing up of [m] / [b] might point to low-tone deafness.
5.3.1 The number of vowel changes and of consonant changes was kept as uniform as possible for each of the four Eroups. Within the group more consonant changes had to be made than vowel chanees.
5.3.2 Kruizinga's "J "coniusion taicies" were used for the alteration of *) Kruizinga J.H. (1995). 'Elechthorerdreid en het verstaan van syraak', thesis, mxcelsior, 's-uravenhate.
consonants. For the modification of vowels Heliwae's *2) vowel triandele served as a point of departure. The duracion of the vowel in the stimuli was also taken into account when the choice of alternatives was made.
5.3.3 The following quadifications seid througnout the proceaure of Part i: the alternatives had to be words in every-daj use; and of jart II: the alternatives had to be absoluteiy meaningiess.

6.0 Iechrical Procedure.

6.1 Tape - recordings.

The speech material was recorded at the Institute of Phonetic Siciences on an Ampex 300 recorder. The technical side of tie investigation was supervised by E.O. Kappner.
Io try and put the stimuli, which had to have four different sound levels, directly on tape with the right sourd.ievel ratio seemed inadvisable as the sigral to noise ratio for the lowest levels would have been very unfavourable owing to tape noise on the tape. Therefore all words were recorded at the same level and while conducting the listening test the play-back signal of the recorder was reduced with the aid of a dB-attenuator to the required level.
In this way the noise on the tape was reducei as well. The recordings were made with lownoise tape (Scotch Tape 201), the copies with lowprint (scotch Pape 138).
The requirements of the recordings were as follows:

1. All words had to be pronounced clearly.
2. All words had to inave the same pitch and intonation (as yuch as possible, anyhow). Tris mesnt retakes were necessary part of the time
3. The same loudness for the different words had to be maiatained. The loudness of the different monosyllables, spoken by a female voice, was checked by ear as well as posiinble. The use of a sound-l.evel meter is of no avail here as it does not measure loudness.

[^0]6.3. Loudnesi levels.

An essential point of investication was to find out at which loudness level an optimal discrimination betweer testees becane apparent. In 1969 a pilot investifution was conducted with a growp of first-year Arts students. The resillts of this test showed trat 3 output levels (items 1 - 30 inclusive) were too bigin. Aithoush some aistakes were made in trose blocks only the block with the lowest loudness level (items 31 - 40 inclusive) showed a aiscrimination between subjects. On account of this pilot investigation the 4 ioudness levels of the speech discrimination test were chosen as follows:
As starting point a levei was chosen which could be clearly undersiood (first 10 items). The loudness of the following three groups was diminished by 5, 5, and 10 dB respectiveiy. The first word vaas [vas] of the first group had an output level of 55 dB , measured directly at the neadphones with a Peekel Sound spectrometer type G.R.B.
The following observation seems called for here. Suppose that the loudness is experienced as being the same for all words when played without attenuation. It does not follow, however, that when the signal is attenuated with e.g. 35 dB this equality of loudness is maintained. After all loudness is a subjective experience. The same problem occurred as well when the recordings were made as a result of the
curvature of the Fletcier-Munisor curve. For this test this problem did not really matter as some-one with impaired hearing has the same trouble when listenine to spoken signais. (speech).

7.0 Execution.

7.1 In October 1970 and 1971 the speech discrimination test was carried out with groups of 47 and 46 subjects respectively. In 1970 at the Institute of Applied Linguistics and in 1971 in the listening booths at the Institute of Phonetic Sciences in Amsterdam. The testees wero all students of the day course for Speech Therapists in Amsterdam.
7.2 The Ioudness leveis of the different groups of items were as follows. In 1970 the attenuation for Part I had been C, 5, 5, and 10 dB per 10 stimuli respectively (see 6.3) and for Part II it was $0,0,5$, and $10 \mathrm{~dB}{ }^{*}$? In 1971 attenuation for Parts I and II was $0,0,5$, and 10 dB .
7.3 The speech discrimination test lasted 7 minutes and was combined with the Seashore Measures of Musical Salents-test, which was also part of the Diagnostic Investigation of Language Acquisition.

In 1970 an air_conduction audiogs am was made; in 1971 the six subjects with the lowest score and the four suijects with the highest score in the speech discrimination tert underweut an audiometer test. (A large group of subjects follow the four "best" subjects, with the same number of correct scores.) The audiograms were made with a Peekel screeningaudiometer type i $66 / 6936$.

8.0 Results.

An outline fol'ows belcn of the scores on items and alternatives with corresponding P-values and item-testcorrelation ($r_{i t}$), which is presented in Table I for Subtest "meaningful items" (1970 and 1971) see page 104 and in Table II for Subtest "mearingless items" (1970 and 1971) see page 105

A phonetic transcription can be found on page 106.

[^1]8.1 1970 part i Subtest "Meaningful Iterns".
\[

$$
\begin{array}{lr}
\text { Total number of icores } 46^{*} \times 39^{* *} & =1794 \\
\text { Number of wrong scofes } & 234 \\
\text { No scores } & 32 \\
\text { Number of wrong scores in } 3 \frac{\text { re }}{} \text { biock } & 42 \\
\text { Number of wong scores in 4th blocr } & 132
\end{array}
$$
\]

1970 Part II Eubteut "Meaningless Items".
Hotai numer oi scores $4 \% \times 40=1880$

Number of wroke scores 308
No scores. 13
Nuaber of wrong facores in zideck 78
Numiver oi wrong scores it 4 thateck 179

1971 bent I Euctest "Meaningful Items".

Total mater of scones $46 \times 40=1840$
Nunber ol wroae scoress 118
No scores 4
Number of wrone scones in zod biock 30
Nurioer of wrong scures in ith i.ock 43

1971 Fart II inotest "Meaningiess Itemis".

Totai number of scores 46×40	$=1840$
Number of wroag scofes	145
No scores	6
Number of wrorio scores in rad biock	39
Number of wrone scores in th block	81

*) 1 subject dropped out of Part I.

Table I: Subtest "Meaningful Iters"."*

A: scores in 1970 - 46 testees
items $1 \mathrm{t} / \mathrm{m} 10: 30 \mathrm{~dB}$ attenuation
items $11 \mathrm{t} / \mathrm{m} 20$: 35 dB
items 20 t/m 30 : 35 वB "
items $30 \mathrm{t} / \mathrm{m} 40: 40 \mathrm{~dB}$ is

B: ecores in 1971 - 46 testees
items 1 t/m 10 , 'س dB attonuation
items $19 \mathrm{t} / \mathrm{m} 20:$ 4~ dB "
items $20 \mathrm{t} / \mathrm{m} 30: 45 \mathrm{~dB}$
items $30 \mathrm{t} / \mathrm{m} 40: 45 \mathrm{~dB}$
$P=$ relative frequency of correct answers.
$R_{\text {it }}=$ item-testcorrelation.

[^2][^3]Mable II: Subtest "Meaningless Items".")

A: scores in $1970-47$ testees

```
items 1 t/m 10:30 % S attenuation
items 11 t/m 20:30 dB "
items 20 t/m 30:35 dB "
items 30 t/m 40: 40 dr "
```

B: scores in 1971 - 46 testees
items $1 \mathrm{t} / \mathrm{m} 10: 40 \mathrm{~dB}$ attenuation
items $11 \mathrm{t} / \mathrm{m} 20: 40 \mathrm{~dB}$
jtems $21 \mathrm{t} / \mathrm{m} 30: 45 \mathrm{~dB}$
items $31 \mathrm{t} / \mathrm{m} 40: 45 \mathrm{~dB}$
$P=$ relative frequency of correct answers.
$R_{i t}=i t e m-t e s t c o r r e l a t i o n$.

$$
\frac{\text { No }}{\underline{\text { Score }}} \underline{p} \quad \underline{R_{i t}} \quad \underline{R}_{\text {it }}
$$

Stimulus	A B	$\frac{\text { Alter- }}{\text { native }}$			$\frac{\text { Alter }-}{\text { native }}$					A	B	A B	
1. raal	4646	raan	1	0	rool	0	0			0.97	1.00	0.25	0.00
2. fuip	$45 i+4$	fijp	1	1	guip	1	1			0.95	0.95	0.22	0.26
3. kem	4746	pem	0	0	kel	0	0			1.00	1.00	0.00	0.00
4. dijp	4644	duip	0	0	bijp	1	2			0.97	0.95	c. 20	0.55
5. boop	4545	moop	2	1	beup	0	0			0.95	0.97	0.33	0.04
6. wok	4545	vok	2	1	wot	0	0			0.95	0.97	-0.05	0.18
7. sut	4644	sit	0	0	sup	1	2			0.97	0.95	0.10	-0.07
8. jin	4745	jun	0	0	hin	0				1.00	0.97	0.00	0.73
9. kag	4546	kog	0	0	pag	2	0			0.95	1.00	0.22	0.00
10.jauy	4140	haup	0	0	jaut	6	6			0.87	0.86	0.21	0.39
11. noos	4746	nees	0	0	noot	0	0			1.00	1.00	0.00	0.00
12. Ian	4746	len	0	0	lon	0	0			1.00	1.00	0.00	0.00
13. jaaf	4545	jaf	0	0	jaas	2	1			0.95	0.97	-0.02	0.04
14. deg	4546	neg	1	0	t.eg	-	0	1		0.95	1.00	0.54	0.00
15. baun	4445	buin	1	0	daun	1	1	1		0.93	0.97	0.45	0.18
16. nuin	4444	nijn	0	0	nuil	3	2			0.93	0.95	0.04	0.11
17. biji	4546	mijf	2	0	pijf	0	0			0.95	1.00	0.57	0.00
18. doee	3645	noes	0	0	doef	11	1			0.76	0.97	0.52	-0.08
19. kuut	3642	kief	4	0	tuuf	?	4			0.76	0.91	0.40	0.10
20. Siep	3439	siep	5	3	fiet	8	3		1	0.72	0.84	0.13	0.52
21. daai	4544	jaai	2	2	dacm	0	0			0.95	0.95	0.29	0.55
22. dauk	4746	nauk	0	0	tauk.	0	0			1.60	1.00	0.00	0.00
23. kuig	3341	рих¢	2.4	5	Kaug	0	0			0.70	0.89	0.20	0.11
24. jijun	4344	wijim	1	2	juim	3	0			0.91	0.95	0.47	0.02
25. foem	3843	fuиm	2	1	g 0 ¢ 汭	9	2			0.80	0.93	0.20	0.40
26. Luup	4140	nuup	2	2	Junt	4	2		2	0.87	0.86	0.04	0.57
27. zieg	4745	zies	0	1	zuag	0	0			1.00	0.97	0.00	0.11
28. wook	2737	200k	1	\square	woop	19	9			0.57	0.80	0.07	0.48
29. neul	3738	mool	0	0	meun	10	8			0.78	0.82	0.29	0.51
30. jeem	3448	j00m	0	0	jeel	13	3			0.72	0.93	0.74	0.57
31. soem	3544	unm	9	0	foem	$?$	1	2	1	0.74	0.95	0.36	-0.07
32 zaaf	4745	2.0.E	0	0	zaf	0	1			1.00	c. 97	0.00	0.04
33. wuut	2639	muat	9	2	buiuk	9	4			0.55	0.84	0.39	0.55
34. hieg	810	jieg	33	34	gieg	5	1	1	1	0.17	0.21	0.10	0.18
35. poor	3945	peur	4	0	toor	3	1	1		0.82	0.97	0.57	0.11
36. Eeue	1939	geuf	26	$?$	Eeeg	1	0	1		0.40	0.84	0.15	0.19
37. weel	1823	weem	28	22	zeed	0		1		10.38	0.50	0.26	0.10
38. wone	4045	weng	0	0	noris	7	1			0.85	0.97	0.30	-0.01
39. fug	3145	gug	13	1	fie	2	0	1		0.65	0.97	0.34	0.73
40. dit	2844	bif	16	2	tif	2	0	1		0.59	0.95	0.35	-0.07

[^4]Phonetic transcription of Meaningful items

Table III．

Subtest＂Meaningful Iteme＂．

1920

	attenuation	average		attenuation	average
		$\underline{\text { g－value }}$			P－value
$1 \frac{\mathrm{st}}{\mathrm{n}}$ block	30 dB	0.921	1）$\frac{s t}{n t}$ block	40 dB	0.944
$2 \underline{n a}$ block	35 dB	0.858	c－a block	40 dB	0.944
3 rd block	35 dB	0.905	3 rad block	45 dB	0.929
4 th block	40 dB	0．707	$4{ }^{\text {th }}$ block	45 dB	0.902

Subtest＂Meaningless Items＂．

1971

	attenuation	average		attenuation	average
		P－value			P－value
1 st block	30 dB	0.958	1统 block	40 dB	0.962
$2 \underline{\text { nd }}$ block	30 dB	0.895	2 na block	40 dB	0.961
$3^{\text {rám block }}$	35 dB	0.830	3 rad block	45 dB	0.910
$4{ }^{\text {th }}$ block	40 dB	0.615	4t年 block	45 dis	0.817

8．2 A striking differefce occurs ketween the scoses of trie grougs taking part in the experiment in 1970 ard 1971 respectively，both for the subtest＂meaningixl itemis＂and for＂statingiess iters＂．Although the
 1971－group were better．Li is fosisiole that the piace where the test was conducted hais sometrimëg to do with it．Lir Lancrage laboratory where the test was conducted ir 1970 is sithatea ori tae side of the street，so that street～soise may have inriuenced the discrimination of the items．In 19\％1，however，the $t \in E t$ was conducted in the noise－ reduced booths of the Institute of Pronetic ociences．This idea is corroborated by the fact that in 1970 ＂no scores＂occurred 32 times ir．Fart I and 13 times in Fart II，whereas in 1971 there were 4 ＂no scores＂in Part I and 6 in Part II。 The deerree of difficulty of the items seema，on the whole，to be on one ievel，indeperdent of the Loudness Level choser．The Exoup of 1971 scored better，but finds tne items as difficult or as easy as the 1970－group．（see tables I and II）．

8．3 Botn groups make aore wintakes in tre meaninglese items tian in the
subtest "meaningful items", this in accordance with data found in literature on the subject. When judging "meaningless items" the subject is deprived of the possibility of using the deductive powers he possesses based on his linguistic knowledge. The hypothesis stated in 4.4.0 was not tested statistically:
ad owing to a mistake made with the attenuation of the loudness level in 1970 (see 7.2).
b) owing to the relatively small number of mistakes made in 1971. However, a trend is clearly observable: the subtest "meaningless items" bas a greater number of mistakes than the subtest "meaningful items", (see 8.1).
8.4 The connection between loudness level and degree of difficulty of items is apparent from the average P-values per loudness level. (see Table III, page 108.
8.5 Everg time the $4^{\text {th }}$ block of both test parts appears to present most difficulties, even of the same loudness level was used as in the 3^{2} d block. It is possible that the $4^{\text {th }}$ block happens to have the items which are most difficult to discriminate in both subtests. It migint also point to a certain amount of fatigue of the listeners, although this is doubtful when considering the duration of the test, ca. 10 minutes.

8.6.0 A closer look at the scores shows the following:

8.6.1 Subtest "meaningfui Items ${ }^{1:}$.

Most mistakes were made in the 4 th block, both in 1970 and in 1971, notwithstanding the fact that the loudness levels in 1971 of blocks 3 and 4 were identical (see 8.5). Items which are difficult to diacriminate are: item 32 wit, with preference shown for wip in both tests $(18,13)$ as against fit (3.1)), item 34 kop with strong preference shown for the alternative kok (18, 13) as against top (3.0).

[^5]A rotable discrepancy between scores of 1970 and 1971 are found in:
item 31 pauw: paul (21.4), bouw (2.1)
item 37 huur: gưr (8.1), hier (2.0)
item 33 2001: 200n (i5.1), zaili (0.0).

Some items appear to have been scored correctiny by (aimost) all subjects, e.g. item 21 nius, item 22 dom, item 36 bal, anditem 39 hujs. The possibility that either the stimulus is rectundant or that the alternatives chosec do not function cannot be ruled oivt.

If me compare the results with those of the piiot-investigation i.t decones chear that the subjects' reaction to the stimuli and their preference for certain alternatives remained practically unaltered.

8.6.2 Subtest "Meaningless Items".

Poor discrimination occurs in blociss 3 and 4:
item 2 © wook with preference for woop (19.9) as compared to zook (1.0), item 36 ge山s with preference for geuf (26.7) as compared to geeg (1.0). The very poor discrimiration of item 3 i+ hieg cannot be oxplained. In 1970 and 197139 and 30 wrone responses occurred. Jieg (33, 34) was heard by 33 and 34 subjects remectively as asainst 5 and 1 who scored gieg (5.1). The very first tims, during tine pilot-investigation, the item was poorly respondec to, notwhthetanding the fact that the loudness level was higher that yers.

The subtest "neaningless iters", as well as the subtest "meaningful items", contains a number of itemis winch (almost) all subjects respond to correctly:
item 1 raal, item 3 kem, item 11 nocs, item 12 lan, item 22 dauk, item 27 zieg, and item 32 zaaif.

When we consider the items which were wrongly scored and see which were the alternatives chosen by the testees, it becomes clear that, taking the sound substitutions on the whole, there is a tendency to substitute consonants rather than vowels. it becomes clear, that the influence which the substitution of one phoreme exercises on the totality of sound impression which a monosylilable evokes, is much greater, than the impression left by the actual characters of the sounds would have led us to suppose. What is meant here is the influence
which a consonant or vowel exercises or the following or preceding consonant or vowel. Subjects are inclined to make more consonant substitution than vowel suostitutions. fhis might be explained as follows:
a) The use of a linear amplifier, wich firat infiuences the highest and the lowest irequences unfavourable when attenuation takes place as a result of the curvature of the Fletchermunson curve.
b) The amplitude of the vowels is higher as a rule than the amplitude of the cousoriants.

9.0 Audiometry.

When comparing the results of the speech discrimination test with the data of the tone audjometry (see 9.3), no cosrespondence appears between the results oi the two types of tests. That is to soy, subjects with the highest number of wrong responses(s) for the speech discrimination test do not show up worst il the tone audiograms. Nor have the best subjects (B) the best tone audiograms.
9.1 The following should be taken note of: with the aid of tone audiometry the ability to hear pure tones is measured. The results are rendered in a tone audiogrim: a graphic representation of loss hearing in $d B$ when compared to a normal auditory organ ${ }^{*}$, set out as a function of the frequency. The tone threshold shows the point where a subject actually hears the pure tone in 50% of the cases when it is produced. No verdict can be given as regards the ability of understarding speech when basing it on a tone audiogram only. Speech is, after all, a complex signal and certain pathological conditions, such as recruitment or certain central factors, will affect the understanding of speech rather than of pure tones adversely. In order to test the capacity of understanding speech use is made of speech audiometry. This speech audiogram is usually made as follows: the patient, wearing, headphores, is subjected to a number of tape-recorded monoayliabic or polysyliabic words. The intensity level is attenuated per group of 10 woras. The patient is requested to repeat what $h e$ has heard. The result is put in a diagram of which the horizontal shows the intensity in decibels, the vertical the percentage of correct responses. dne shape of the graph fives the

[^6]investigator certain information about the type of nearing loss and poissibilities of revaikdation.
3.2

The speech discrimiration tesi ás wiscribeá nere, is, therefore, a modification of the usual speech audiometry (for cioser analysis of loss of hearing special types of apeech audiometry are used). As none of the subjects participating ir the weech diecriminatimu test appeared to have an abnormal tone audicgram, no essential deviations were to be expected from the discrimination of speech based on the capacity of hearing. The divergences which the subjects of normal hearing siowed in their ability to discriminate sjeech in the test conducted here, deqend apparentiy on different fayctors, of wiscin nothing can be said on the basis of tijis test.

O riaht
\times 土eft
TONE AUDIOGRAM of the best (B)
testees in the speech discriminationtest
-1970.

(B)

IUNE AUDIUGKAM
of the best (B)
testees in the speechdiscriminationtest 1270.

- righat
\times lefit

TUNE AUVIOIRGM
oi the worst (w) teistees in the speechdiscriminationtest 1970.

0 right
$\times 2 \boldsymbol{\text { 2 }}$ t

or the worst (w)
testees in the speechdiscriminationtest 1970.

125 250 500 i000 2003000800012

(1) rigint

12; $250500 \quad 9000200040008 \times \mathrm{CO} \mathrm{H}:$
(i)

$\because 25 \quad 350 \quad 500 \quad 1000200040008000 \mathrm{~Hz}$

0 rignt
\times iest

TONE AUDIOGRAM
of the best (B)
testees in the speechdiscriminationtest 1921. .
$\because 25250 \quad 200 \quad 10002000+0008000 \quad 5$
(ii)

TONE AUDIUGKAN
or the worst (N) testees in the speechdiscriminationtest 1971.
(W)
$125 \quad 250 \quad 500 \quad 1000 \quad 2000 \quad 40008000 \mathrm{~Hz}$

0 right
X $2 \boldsymbol{\text { ® }}$

IONEAUDIUGKAM
of the worst (w) testees in the speechdiscriminationtest 1921.

10.0.0 Gonclusion.

10.1.0 The objection that mieht be raised against the speech discrimination test in this form, is, that the results state only whetrer certain speech stimuli at a certain loudness level are perceived well or are not perceived, but that they give no information as to tiae way in which different results could have occurred between subjects. In other words, it is not quite clear what is being measured with chis test. This is partly the result of the fact that only subjects with normal hearing participated. Consequently it is impossible to give a decisive answer on the points broueint up urder 4.1 .0 to 4.3 .0 inclusive. Some remarks have been made unaer the heading 'Results'.
10.2.0 The value and the usefulmess oi the test might be assessed more fully in the following manner:
10. Z. 1 The speech discrimination test taken with a new group of subjects in such a way that the whole corpus of the test is offered on the same loudraess level. With the new findings on hand it will be possible to assess which items do not discriminate and which alternatives are not functional. A comparison with the results of 10.2 .2 will no doubt be of some interest.
10.2.2 The speech discrimination test taken with a group of sukjects with impoired hearing. The subjects would have to satisfy the following conditions:
a) hearing loss will, have to be to the same degree f'r the whole group
b) hearing loss will have to be conform for the whole group. (e.g. perceptinc loss without recruitment).

In order to assess a) and b) a tone audiogram would have to be made of each subject.
Dependent on the results of this test a criterion could be set up by which the border - line sufficient / insufficient discrimination of speech is settled wita regard to possible hearing-loss.
10.2.3 A follow-up investigation of language laboratory students. This could give an indication regarding the connection between the ability of discriminating speech and the ability of acquiring a correct pronunc-
iation of a foreign languade.
10.2.4 A comparison of the data of the speech discrimination test with
those of the SEASHORE-test, which, as was stated before, was conducted
in combination with the speech discrimination test.
10.2.5 A comparison of the test data of the speech discrimination test, presented in the form of a multiple choice test and also presented in a. free-choice situation, conducted with two matched groups of subjects. Execution of the free-choice test would only be a matter of a different way of scoring.
10.3.0 With these new data on hand an assessment could be made regarding the following points:
a) 1. the speech discrimination test used as a means of testing 2. if so, what category of testees can be subjected to it.
b) some alterations to be mado in the speech discrimination test, viz. a change of some items or of some alternatives
c) the discrimination test to be maintained in its present form.

[^0]: *2) Hellwag, C.F. (1781j. 'je Fermatione Loquelae'., dissertation, Tübingen.

[^1]: *) The difference in loudness leveis between items 11 - 20 inclusive of Part I when compared to Part II was the resuit of a mistake.

[^2]: *) dropped because of technical reasnne.

[^3]: *) statistic processing and analysis m j. fo. A. van ferpt.

[^4]: **) Statistic processing ant anaijsis by d.w.A. van rierpt.

[^5]: *) Scoring on alternative items will be indicated as follows:
 ()) the first number indicating the 1970 score, the second number that of 1971.

[^6]: *) 'Normal' defined as international zero-level。

