Calculation of formant frequencies of twin-tube and n-tube approximations of the vocal tract.

Contents

1. Summary p. 59
2. Introduction 59
3. Basic DLinciades
3.1. Four-pole theory 60
3.2. Bi-siection method of Bolzano 64
4. Flow-chart narratives
4.1. Twin-tube program 65
4.2. n-tube program 67
5. Applications
5.1. Twin-tube program 70
5.2. n-tube program 71
References 72
Appendix I
(1) Flow-chart twin-tube program 73
(2) Flow-chart calculations twin-tube program 75
Appendix II
(1) Flow-chart n-tube program 76
(2) Flow-chart calculations n-tube program 78
Appendix III
Listing twin-tube program 80
Appendix IV
Listing n-tube program 84
Appendix V
Output twin-tube program 90
Appendix VI
Output n-tube program 92

1. Summary

In this report two programs in Basic Fortran IV are described, which calculate the formant frequencies of models of the vocal tract. The first program calculates the formant frequencies of the so.called twin-tube model. The second, which can be considered as a further development of the twin-tube program,takes a series of 20 connected tubes, each with uniform cross-area, as an approximation of the vocal tract. In both programs the calculations are based on the theory of four terminal networks and the bi-section iteration method of Bolzano. The programs are primarily written for an IBM 1130 system, but can easily be modified for other systems. The console typewriter is used for the input of the parameters. The programs are self-instructing.

2. Introduction

The literature on the calculation of formant frequencies mentions several models of the vocal tract. They all are one-dimensional models. In most cases the boundary conditions are: $u=0$ ($u=$ velocity) at the vocal cords, and $p=0 \quad(p=s o u n d$ pressure) at the lips. Two types of models can be distinguished:
(a) models in which the cross area is a continuous function of place,
(b) models in which the vocal tract is approximated by a number of tubes with uniform cross-areas.
Examples of type (a) are presented in calculations based on Webster's horn equation, as done, for example, by Ungeheuer (1). A well-known model of type (b) is the so-called twin-tube, which was presented first by Dunn (2), and later by Fant (3). Mol's formula (4), which is built on other parameters, is easier to handle. Since the twin-tube equation is trancendental, in the general case its solution can only be found by numerical methods.

In the case of vocal tract models consisting of a greater number of tubes, it is hardly possible to derive manageable equations. Using a computer, it is possible to avoid the derivation of the equation, as will be shown later on (4.2.6.).

In this report two programs are presented. Both are written in Basic Fortran IV for an IBM $l l 30$ system, but can easily be modified for other systems. The first program, written by Blom, is a numerical solution of the twin-tube equation. The second, the n-tube program,
written by Blom and Kappner, uses an algorithm to determine the formant frequencies of a chain of an arbitrary number of tubes. For practical reasons the number of tubes is limited to 20 in this program. In modifications for other computing systems this limit can be adapted to the precision of the system.

Further work in this fiela is in progress, and will be reported upon later.
In this report the following notations are used:
S is the cross-area of the tube,
u is the velocity of the air particles,
v is the volume velocity ($v=S . u$) ,
c is the velocity of sound propagation,
p is the sound pressure,
p is the density,
f is the frequency,
ω is the angular frequency $(\dot{w}=2 \pi f)$.

3. Basic Principles

3.1.-EOur=pole_theory.

For a tube with uniform cross area, which has a length 1_{1} and a cross area S_{1}, the relation between pressure and volume velocity at both ends $\left(p_{0}, v_{0}\right.$ and p_{1}, v_{1} respectivel y) is given by:

$$
\left[\begin{array}{l}
p_{0} \\
v_{0}
\end{array}\right]=\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
v_{1}
\end{array}\right]
$$

where A_{1}, B_{1}, C_{1} and D_{1} are the four-pole coefficients:

$$
\begin{aligned}
& A_{1}=\cos \frac{\omega I_{1}}{c} \quad, \quad B_{1}=i \frac{p C}{S_{1}} \sin \frac{\omega 1_{1}}{c}, \\
& C_{1}=i \frac{S_{1}}{\rho c} \sin \frac{\omega_{1}}{c}, D_{1}=\cos \frac{\omega l_{1}}{c}
\end{aligned}
$$

Fig. 2

For n connected tubes with uniform cross areas, with lengths and cross areas respectively $l_{1}, l_{2}, l_{3}, \ldots, l_{n}$ and $S_{1}, S_{2}, S_{3}, \ldots, S_{n}$, and pressure and volume velocity at the end of each as given in fig. 2 , we have:

$$
\left[\begin{array}{l}
p_{0} \\
v_{0}
\end{array}\right]=\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]\left[\begin{array}{cc}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right] \quad \ldots .\left[\begin{array}{ll}
A_{n-1} & B_{n-1} \\
C_{n-1} & D_{n-1}
\end{array}\right]\left[\begin{array}{cc}
A_{n} & B_{n} \\
C_{n} & D_{n}
\end{array}\right]\left[\begin{array}{l}
P_{n} \\
v_{n}
\end{array}\right]
$$

If we define:

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\begin{gathered}
n \\
i=1
\end{gathered}\left[\begin{array}{ll}
A_{i} & B_{i} \\
C_{i} & D_{i}
\end{array}\right]
$$

then we have

$$
\left[\begin{array}{l}
p_{0} \\
v_{0}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
p_{n} \\
v_{n}
\end{array}\right]
$$

Assuming that the closed ending (vocal cords) is at the first tube,
and the open ending (lips) at the n^{\prime} th, we have as boundary conditions:

$$
v_{0}=0 \quad \text { and } \quad p_{n}=0
$$

Thus:

$$
\left[\begin{array}{l}
p_{0} \\
0
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
0 \\
v_{0}
\end{array}\right]
$$

Then the condition :

$$
\begin{equation*}
D=0 \tag{1}
\end{equation*}
$$

must be fulfilled. This is an equation in ω; the solutions give us the resonance frequencies of the system.

For a small number of tubes, the matrix multiplication can easily be carried out. In the case $n=2$ (twin-tube), the condition (1) becomeś:

$$
C_{1} B_{2}+D_{1} D_{2}=0,
$$

or:

$$
\begin{gathered}
i \frac{S_{1}}{\rho C} \sin \frac{\omega I_{1}}{C} \cdot i \frac{C C}{S_{2}} \sin \frac{\omega I_{2}}{c}+\cos \frac{\omega 1_{1}}{C} \cos \frac{\omega 1_{2}}{C}=0 \\
\cos \frac{\omega 1_{1}}{c} \cos \frac{\omega 1_{2}}{c}-\frac{S_{1}}{S_{2}} \sin \frac{\omega I_{1}}{c} \sin \frac{\omega I_{2}}{c}=0
\end{gathered}
$$

Introducing the parameters:
$1=$ total length $=1_{1}+1_{2}$,
$k=$ ratio of the cross areas $=\frac{S_{2}}{S_{1}}$,
$\Delta=$ excentricity $=\frac{1}{2}\left|l_{1}-l_{2}\right|$ (see fig. 3) and
$\beta=$ relative excentricity $=\frac{\Delta}{\frac{1}{2} I}$
this equation can be reduced as follows:

$$
\begin{align*}
& \left.\frac{1}{3}\left[\cos \frac{\omega 1}{c}+\cos \frac{\omega\left(1_{1}-1_{2}\right)}{c}\right]+\frac{S_{1}}{2 S_{2}}\left[\cos \frac{\omega 1}{c}-\frac{S_{1}}{S_{2}}\right) \cos \frac{\omega\left(1_{1}-1_{2}\right)}{c}\right]=0 \\
& \left(1+\left(1-\frac{S_{1}}{S_{2}}\right) \cos \frac{\omega\left(1_{1}-1_{2}\right)}{c}=0\right. \\
& \cos \frac{\omega 1}{c}=\frac{1-k}{1+k} \cos \frac{2 \omega 1}{c}=0 \\
& \text { or: } \cos \frac{\omega 1}{c}-\frac{1-k}{1+k} \cos \frac{\omega 1}{c}=0 \tag{2}
\end{align*}
$$

Fig. 3
Δ has been introduced as ar absolute value. Since it only appears under the cosine function, its sign is of no consequence.
The equation (2) is the well-known twin-tube equation in the form given by mol. The twin-tube program starts from this equation. Since the complexity of the expression D increases rapidly with the number of tubes, a slightly different approach must be chosen for the n-tube program (see 4.2.5).

Suppose $f(x)$ is a continuous and bounded function on $(0, \infty)$. We want to approximate the values of x, for which $f(x)=0$. (Let us assume that such values exist.) Let these values be denoted as x_{1}, $x_{2}, \ldots, x_{n}, \ldots$. successively. Suppose that we can find a certain value $d,(d>0)$, such that for each pair of successive zeroes holds : $x_{n}-x_{n-1}>d$, and a value $c(c>0)$, such that $x_{1}>c$. Then we construct a series of trials, denoted as $x=t_{0}, t_{1}, t_{2} \ldots$. t_{n}, \ldots in the following way.

The first trial is $: t_{0}=c$. We determine the sign of $f\left(t_{0}\right)$. The next trial is: $t_{1}=c+d$, and the sign of $f\left(t_{1}\right)$ is determined. If this sign is the same as the sign of $f\left(t_{0}\right)$, the next trial is: $t_{2}=c+2 d$. In this way we continue, every time determining the sign of $f\left(t_{n}\right)$. As long as this sign is the same as that of $f\left(t_{0}\right)$, the next trial is obtained by adding d to the preceding. We assume that $f\left(t_{n}\right) \neq 0$ for each n. (If $f\left(t_{n}\right)=0$ for a certain n, the zero is found, and the process is stopped.)
We continue, until we have got a trial $t_{k}=c+k d$, for which the sign of $f\left(t_{k}\right)$ is opposite to the sign of $f\left(t_{0}\right)$. Then the zero x_{1} must be between the last two trials, t_{k-1} and t_{k}. We now "go backward" in steps of $\frac{1}{2} d$ (that means: $t_{k+1}=t_{k}-\frac{1}{2} d ; t_{k+2}=t_{k}-d$), again determining the sign of each t_{n}, until the first trial t_{k+i} for which the sign of $f\left(t_{k+i}\right)$ is opposite to the sign of $f\left(t_{k}\right)$. (Thus: $i=1$ or $i=2$.) Then x_{1} must be between the last two trials, and we "go forward" in steps of $\begin{aligned} & \text { d. This process is con- }\end{aligned}$ tinued until x_{1} is approximated sufficiently accurately. To approximate the value of \because_{2}, we repeat this process: we start from the approximated value of x_{1} and take as the first trial $x_{1}+d$, and so on. The decision " go forward " or " go backward " must now depend on signs opposite to those, determining this decision when approximating x_{1}.

It is clear that the error in the approximated value of x_{2} is independent of that of x_{1}. The iteration method here cieseribed is known as the bi-section method of Bolzano. It is well suited to high speed computers.
4. Elow-chart narratives.

Both programs are self-instructing. The instructions are printed on the console printer. The keyboard is used for the input of the parameters, the punching of data decks thus being avoided.

4.1._Twin-tube_program.

Appendix III is a listing of the twin-tube program. Appendix I consists of:
(1) a flow-chart of the twin-tube program,
(2) a separate flow-chart of the calculations carried out in the twin-tube program ("CALCULATE" in flow-chart (1)).
Observing the following remarks, the course of the prouram can easily be read from these appendices.
4.1.1. C is defined as $35000 \mathrm{~m} / \mathrm{sec}$, rormai value for the warm air in the vocal tract. Ey means of data entry switch 14 this parameter can be chanced (staterments lijoff.). In statement 145 a test is built ir for extreme values of c.
4.1.2: If data switch 15 is on, the program stops.
4.1.3. Every time when reading parameter values, the program tests the field. This is realised by reading all the places out of field; if a value $\notin 0$ is encountered, an error message is produced.
4.1.4. The counter INT causes the instruction in statement 255 to be printed once only, namely after the first run of calculations.
4.1.5. Three tests for the values of the twin-tube parameters are built in (statements $195,205,215$.). In the case of extreme values, the program gives error messages. The tests are the following:
(a) 1 must be between 10 and 25 cm . This is only because of the practical object of the program: calculating models of the vocal
tract. Technically the program could go beyond these limits. Difficulties only arise at very great values for 1 , for example: a model having $k=8$ and $\beta=0$, wolld produce, at an l-value of more than l meter, frequencies of the first and second formant so close to each other, that they would come within one single approximation step (see 3.2. and 4.1.?.).
(b) k must be between 0.1 and 10 . This limitation is for mathematical reasons.
Writing the twin-tube equation (3.1.,(2)) as:

$$
\cos \frac{\omega l}{c}=\frac{1-k}{i+k} \cos \frac{\omega \beta l}{c}
$$

the solutions can be found as the intersection points of two cosine functions, one having maximal and minimal values of +1 and -1 , the other of $\frac{1-k}{1+k}$ and $-\frac{1-k}{1+k}$. Both for great and small values of k, the value of $\frac{1-k}{1+k}$ is close to 1 .
In this case, in the neighbourhood of those values for ω for which both functions are about maximum (or minimum), there are two intersection points close to each other (see fig.5). It now may happen that these points come within one approximation step, which means that two formant frequencies may be missed.

(c) β must be between -1 and +1 . By definition, β has no physical meaning for other values.
4.1.6. Statement $245+1$ tests for the sign of the expression D (3.2..(1)), which for the twin-tube has the form of 3.1..(2). Two parameters T_{1} and T_{2} are used, each of which is either +1 or -1 .

The sign of T_{2} changes every time that the sign of D is changed; the sign of T_{1} changes every time the program starts to approximate another formant frequency. This is the way in which the decision "go forward/go backward" is governed.
Since $0.1 \leq k \leq 10$, (see 4.1.5..(a)), it follows that:

$$
0<\frac{j-k}{1+k}<1
$$

and:

$$
\cos \frac{\omega l}{c}-\frac{1-k}{1+k} \cos \frac{\omega \hat{E} l}{c}>0 \text { for small values of } \omega \text {. }
$$

Fhe first trial $t_{0}($ see 3.2.$)$, which only served to determine the sign of the expression D for small values of ω, can be omitted. Both T_{1} and T_{2} are first defined as -1 .
4.1.7. The value of F (trial frequency) is first defined as zero, and DF (increment of F) as 32 Hz . Therefore the trials t_{0}, t_{1}, $t_{2} \ldots .$. are: $32,64,96, \ldots . .1 l z$, until the sign of D changes. In other Nords, our assumption is that the difference between two successive formant frequencies is more than 32 Hz , and the first formant Erequency is more than 32 Hz .
4.1.8. In statement 235 the step length is devided by 2 , and $235+1$ tests for the step iength: if this is less than $\frac{1}{7 z}$, the process is stopped. Statement 250 represents a rounding-off procedure: $\frac{1}{2} \mathrm{~Hz}$ is added to the last trial, and the figures to the right of the decimal ?oint are deleted. This deletion is effected by the FORMAT-statement; this is not mentioned in the flow-chart. In this way we round off to the nearest whole number of Hz . If the fractional part of the last trial is exactly .5, rounding off occurs to the next greater whole number of Hz .

4.2. n-tube program.

Appendix IV is a listing of the n-tube program. Appendix II contains the flow-chart, and, just as in the case of the twin-tube program, a separate flow-chart for the calculations. The following remarks refer to these appendices.
4.2.1. In three places the flcw-chart has the words: WRITE INSTRUCTION, followed by a number in brackets. These numbers refer to the sections of Appendix VI where the respective instructions are shown.
4.2.2. There are two input modes:
mode 1: all tubes have the same length, mode 2: there are tubes which have different lengths.
4.2.3. The following table gives a survey of the parameters to be entered through the keyboard and of the data entry switches by means of which the parameter values can be changed.

Name of parameter	meaning	data_entry_switch
MODE	input mode,see 4.2.2	1
NMB	number of tubes (s 20)	2
ктот	number of formant	
	frequencies to be	
	calculated (54)	3
C	velocity of sound	4
S (I)	diameter of the Ith	
	tube	9, to change diameters of all tubes
	($\mathrm{I}=1, \ldots, \mathrm{NMB}$)	8 , to change diameter of one tube only
In the case of mode 1:		
LN	length of each tube	5
In the case of mode 2:		
LNGTH (I)	length of the Ith tube ($I=1, \ldots$. NMB)	7. to change lengths of all tubes
		6 , to change length of one tube only

If data switch 6 or 8 is on, the program first inguires which tube must be changed.
Data switch 15 causes the program to stop.
The course of the program when testing for the different data switches can easily be read from the flow-chart.

Contrary to the twin-tube program, no tests are built in for parameter: values and for the field. The program, therefore, is supposed tu work in an error-free environment. Errors in the calculated formant frequencies are data-dependent.
4.2.4. The diameters of the tubes are specified in the input. Since the calculations are in terms of cross areas, the diameters have to be converted accordingly. Only the ratios of the cross areas are of importance, so it is sufficient to square the diameters (statements 205-210).
4.2.5. Contrary to the twin-tube program we do not have an equation to start from. We therefore proceed as follows. The trial
frequency is filled in in the four-pole coefficients of the different tubes, so that these become constants. With these constants, the matrix multiplication is carried out, which gives us the numerical value of the expression D for this trial. Depending on this value we take the next trial as described in 3.2 .
In the program this is realised as follows.
After defining the trial frequency, the unit matrix is loaded in a buffer AMAT (360 ff.).
A matrix BMAT is defined as the four-pole matrix of the first tube in which the trial frequency is filled in (depending on the mode: statements 365 ff , and 375 ff , or 380 ff.$)$. Subsequently AMAT x BMAT is calculated ($385 \mathrm{ff}$.), and this product is stored in buffer AMAT ($385+4$). Now BMAT is defined as the fourmpole matrix of the second tube, and AMAT x BMAT is calculated again, and this product is stored buffer AMAT, and so on. When this loop is enced, the buffer AMAT contains the product of the four-pole matrices of all the tubes. Statement $410+1$ tests for the lower-right element of this product matrix.
4.2.6. The 2×2-matrices to be multiplied contain real numbers in the principal diagonal, the other two elements being imaginary. The product of two of such matrices is of the same form again. Only the lower-right element of the product matrix is used, which is real. As a consequence of the imaginary numbers, certain terms in the product have minus signs. These are stated in the matrix multiplicatior: in the statements $385 \mathrm{ff}$. ; the factors i themselves are omitted.
4.2.7. In the lower-right element of the product matrix, the factors pc from the four-pole coefficients cancel each other out. This is
why they are left out in the calculations.
4.2.8. F (trial frequency) is first defined as 32 Hz , and $D F$ (increment) as 64 Hz . The assumption, therefore, is that the first formant frequency is more than 32 Hz , and the difference between two successive formant frequencies is more than 64 Hz .
4.2.9. Two parameters $T 1$ and $T 2$ are used in the same way as in the twin-tube program (see 4.l.6.). For the twin-tube the sign of the expression D for small values of ω is known beforehand. In the n-tube program this sign is determined in the first trial (32 Hz) and depending on this sign a parameter $T T$ is set to +1 or -1 (395 ff.$)$.

5. Applications.

5.1. TTwin=tube_program.

Appendix V shows an output of the twin-tube program.
5.1.1. In the first section, marked (1), the twin-tube parameters are defined on the basis of a print-plotted twin-tube model and an instruction is printed, prescribing how to enter the parameters. When the "program start"-key is pressed, three pairs of brackets are printed, in which the parameter values have to be filled in. After pressing the "erd of field"-key the calcuiations are carried out and the formant frequencies are printed on the next line. By pressing the "program start"-key once again, new parameter values can be entered.
5.1.2. In section (2), the parameters of the model for $[$ a $]$, a tube with a constant cross area, are filled in. The formant frequencies are the odd harmonics, produced by an organ pipe closed at one side and open at the other, and having a length of 17.5 cm (the average length of the male vocal tract).
5.1.3 In section (3) the parameter values of the model of Dutch [a] are filled in (see Mol, (4)).
5.1.4. In section (4) the velocity of sound is defined as $34000 \mathrm{~cm} / \mathrm{s}$ (data switch 14), and the same twin-tube parameters as those in section (3) are filled in. As is to be expected, a lower value for c results in lower formant frequencies.
5.1.5. In sections (5), (6) and (7), the parameter $1, k$ and 8, respectively, are out of their specified ranges (see 4.l.5.). In each case an error message is produced and new brackets are printed. In section (8) all the parameters are within the specified ranges again.
5.2.n-tube_mrogram.

The following remarks refer to the output of the n-tube program, reproduced in appendix VI.
5.2.1. In section (1), an instruction is printed and some of the parameters are defined. After pressing the "program start"-key, brackets are printed to specify the mode, the number of tubes, the desired number of formant frequencies, and the velocity of sound.
5.2.2. In the case of mode 1,the instruction in section (3) is printed. After this, brackets are printed for the specification of the dimensions of the tubes. In section (4) the model for $[\theta$] is calculated. Section (5) shows the output when calculating the twin-tube model for Dutch la l, first for $c=35000 \mathrm{~cm} / \mathrm{s}$ and then for $c=34000 \mathrm{~cm} / \mathrm{s}$, just as is appondix V .
Whereas in the twin-tube program the ratio of the cross areas is used as a parameter, in the n-tube program it is the diameters of the tubes that have to be specified.
5.2.3. In section (6) LN is changed by means of data switch 5. The computer calculates again, the othex parameters remaining unchanged. A comparison with section (5) shows that greater lengths result in lower formant freguencies (the "law of proportional growth" , see Ungeheuer (1)).
5.2.4. If data switch 1 is or, the program branches to the beginning, immediately after the first instruction (section (7)). The mode is now defined as 2. An instruction is printed which is slightly different from that printed in the case of mode 1.
5.2.5. As can be seen in section (3), the specification of the dimensions of the tubes takes two lines when the number of tubes is more than 10. Eirst ten pairs of brackets are printed on one line, and after the values for the first ten tubes have been filled in and the "end of field"-key has been pressed, the remaining pairs of brackets are printed on the next line.
5.2.6. Section (9) is produced by setting data switch 8 on. Only the diameter of the 18 th tube i.s changed; the remaining parameter values are left unchanged.

References.

- - - - -

(1) Ungeheuer G.: Elemente einer akustischen Theorie der. Vokalartikulation. (Springer 1962)
(2) Dunn H.K.: The calculation of vowel resonances, and an electrical vocal tract. (J.A.S.A., vol. $22, \mathrm{p} .740$ ff., 1950)
(3) Fant G.: Acoustic theory of speech production. (Mouton 1960)
(4) Mol H.: Fundamentals of phonetics II. (Mouton 1970)

Appendix I.
(1) Flow-chart twin-tube program.

(2) Flow-chart calculations twin-tube program.

Appendix II.
(1) Flow-chart n-tube program.

(2) Flow-chart calculations n-tube program.

$1 /$ FOR
＊l：st ALl．

TッTOC10

THIS SASIC FORTDAN IV WR：TTEY DROERAY EOVPUTES
TATCO20
TivT0030

THitcocás

なップロこの

「ご！こうこ。

－••！こ い
Ti．NTOことこ

－Tここもの
「いいTだごこ
Tッシナ0110
－リTE
Tnかなこうこ
TrivTO1シ0
REALLASTH

U！NEASIOAFO2（4），NC（6）
「がソう15

Tいが心20
2！F：ir＂at（5x，1，＇，！5x，1，1；
Tカivi22：0

Tuirio220

Tッ心Tた230

Trivr0260

TuinTO270

THivTO230

？2x，＇1 ノ＇，

TNATO 370

ThㄷO350


```
    gN FORYAT1'** L OUTS?DE RANGE 10.25,')
    M, TNM:O420
```



```
100 FIRWATI'OFSET IATA FMTRY SN!TCH !& AND DRESS RRCGRAV START KEY.'/ITNATO44O
OS & RRVAT('END OF TGMTE'/l)
:!? FO२NAT(3(54.0.2F?.C)!
11j F\マ*\DeltaT(/4(1F',!!,'=1,F7.0,C/5',3x)/)
120 FJRVAT(F4.C,FG.O,Fム.0)
    InT = 0
    C = 35000.
    C =VELNC!TY aF SO!ND
    *!?!!!!(1.5)
    \becauseRITE(2,10)
    #R!TE(2,!5)
    ,\mp@code{?!TE(1,2C)}
    NO:TE(1,2.51
    |R1TE(1,3C)
    \becauseRITE(l,2L)
    WRITE(1.20)
    H?!Y?(1.15)
    WF!TE(1.101
    w!!T5:2,35)
    v'2!Tए:!,40,
    &1?!TE(:,45)
    wマ!`!-(1,50)
225 OAUS5
    CALL =ATSN115,NETOO:
    心のTO1250,1301,N5TnO
23n <ALL DATS::(:4,N\because)
    GOTO\235,!651,*:%
I25 :1PITE(1,55)
    3 = C.
    33 = 0.
    REAO(6,120)B,C,SR
    R = n + S!
    !F (D) 140.145,140
140 6R:TE(1,?J)
    #?!TE(1,75)
    C0T0 135
145 IF 1C - 10000.1 J55.150.250
Tnicto 00
TrivT0410
「がいTつム20
TnivT0430
TrinTO450
Trint0460
TNNTC470
Trivi0480
Th：TTO490
TNHTC500
TriNTE510
TッにTコラ20
TN以Tに530
TNNTこ540
TinCTC550
TNATO560
TNNTこ570
Trivtojec
TrivT0590
「シリTCも00
TッNTCOLO
TッivTOG20
THiT2630
「的：T0640
TMNT0650
TシNTC660
「がたづつO
TnivTOS80
TiNT0690
TNAT0700
TrATO 7：0
TniTOT20
TANTO730
ToivT074C
TWNTO750
TiN：0760
Twiv？OT7C
TッNTC780
Tristo 790
THNTO800
```



```
155 4R!T5(1.95)
    \becauseRITE(1,75)
    GO?O 135
:G% :OP!TF(1,10こ)
    DAUSE
165 ïR!TE11,551C
    ว) 17! !=2.5
    !⿰ A(EI)= = .
```



```
    A< =RAT!O NE EPNESSECT:ONS
    3FTO=QE:AT!U!GRECENTR!C:TV
    &ACOTH=LEARTH OE TN!`TJBE
    CA!L ONTSN(15,\cdotseTCO:
    ๕0ra(250,?T5),NsTm
    175, :の l!O! 1=2.f
    100 AC:1) = AC!1! + NC!1)
    ir (10(1)) 185.100,\05
    :85 :R:TE(1,70)
        \therefore21+F(1,75)
    ヶのT! ?20
    1gn IF (1.15TH - 10.) 2CC,19j.195
```



```
    20^ \because21T5:1,90)
        *2!+5(1,?5)
    CNTR 12O
    20j If (n@s(RETA) - 1.1 215,215,?!?
    210 N&!TE(1,05)
        NQ:TE(1,75)
        GOTO 130
    :15 :F 1AK - :0.1 220,220,225
    <20 If {aK - .1) 2?5,230,?20
    ?25 \because2!T5(1,90)
        &2!TE(1,75)
        心0T0 12?
    23..? = \epsilon.283R?5 * LNETM / C
        n=6.293825* LSGTH / C
        O = # & RTTA
        R = (1. - AK)/ (1. + AK)
        F = O.
        O? 750 < =?,4
```

TwNT0810
TivNTO820
Tursto 830
Tn＇ATCR40
TMATOB5
TritT0360
TrikTO870
Tritoe8c
Tw：TCBSO
「い゙たたのこに
Trintoglc
r．．inrog20
Trinto930
TWN？9ら4 C
T． 19.0950
Tッ，10900

TwiTつら日。
Thへなの90
Tッ：11000
Trin？ 10

Tris？ 1030

Tri $\because 1040$
「が，T1050
TinNT1000
「いいて1070
Tw：T1080
Tんかっこうよう
TッNT1100
TriTまこ！
Tin iril20
Tッ：T：132
Trit1146
Trivile
Taictiloc
TV：Ti」170
TVINT1180
Trit1190
THOT1200
Thintl210

```
    N=C
    DF=22.
    T1=1-1.1 * * K
    G2Tत 240
    235 DF= DF/2.
    IF IDF -.251 250,250,24C
    STOO ITERATION !F STED SMALLER THAN .5 CISEC.
240 
    T2 = 1 - 1.1 * * N
    245F=F
    IF1T1 * T? (COS\O*F) - F * COS(N* F)11 235,250.245
    250FOR(K)=F+.5
    Wマ!TE(1,115)!!,FOR(1),1=1,4)
    !NT = !MTT + 1
    IF (!NT - 1) 255.255,125
    255 :NPITE(1,50)
    GOTC 125
260 WR!TE(1,105)
    En:L FXIT
    END
```

TriNT1220
TWNT1230
TWNT1240
TXNT1250
TriNT1260
TANT1270
TWNT1280
TWNT1290
TWNT1300
ThNT1310
TriNT1320
TWNT1330
TORT1 1340
TiNTI 1350
Trintl360
TWNT1370
TNNT1380
TNNT1390
TWNT1400
TNNT1440

DROGRAM N！HRE

MTUDOOLO NTUECO20 NTUBOO30
THIS FORTRAN ！V AR！TTEA RZOGRAN CJMDUTES FIDF2，F3 AND F\＆ NTUBOO4C OF AY：N－TURE YODEL DE THE VOCAL TRACT．VTUBE IS PRIMARILY
 NTUSJO50 NTU30こ60 NTU80370 NTUOOCEC
REALLA，LAN•L！ MTUGCOSO

ATTUEO：00

NTUHO110
 1ODEL DE TUS VOCDL TRACT．＇／／USE INDUT MODE 1 IF ALL TUBES HAVE THENTUEOI3O 1 SAVE LEッGTH．＇！！F THIS ！S ：NT THE CASE LSE INDLT NODE 2．＇／MAB＝NUNTUEO14U

 1ALLES THAN OR EOURL TO 4．＇／CFVF：OCITY OF SOUND．＇／1 NTU甘O17J
15 FORNATGUSE KEYENARO Tの EATER THE PARANETSRS．＇／USE DECIMAL PCIMTSATUDOIBO 1 AA：D RRESS EVD OF FIFLD KEY．＇／IIF YOU STR：KE A WRCNG KEY DRESS ERANTUBO：YO IST FIELD KTY AAD REENTER PARANETERS．$/ / / T O$ CHANGE MODE NAMB KTOT ORNTUBOZOO

NTUBO23C
35 F JRUAT／／ML！＝LENCTH OR ZACH TUBE！
NTU日O290

※TVジう31C
45 FORNATPTR CHAMCE LA：SET DATA SMITEH 5．＇1 NTUUO． 3 OO

1LL THE S（1）SET JATA SW！TCH 9．1／／1
NTUEこ340

6）FクRNAT（F12．3）
：TVBJ352
65 FORVATI／／＇SI！：＇1

```
70 FO&VAT(8OAl)
NTUBO280
75 FORMA:(1OFR.O)
NTUGO392
NTURO4OJ
RO FORNLT''LAGTH(!)=LENGTH NF THE : TH TURE')' NTURJ4OOO
85 FORNAT('TO CHANGE NNF SINGLE LMGTH(I) SET DATA SHITCH 6.',1TO CHANNTU日OLIC
LGE A!L THE LNGTH(I) SET LATA SBITCH 7.'I
90 FORMAT('LNGTH(!)')
95 FORNAAT('NMB (1,6X,')'/)
100 FORMAT('KTOT (',4x,'1'/;
105 FORMAT('C= (1.10X.1)'/)
110 FORMAT(F15.0)
:!5 FORMAT(1!: (',!JX,')1!)
120 FORMAT('LAGTH(!)=(1,8X,'1)'/)
125 FORNAT(E2O.O)
132 FORNAT('S(1)=(1,RX,1)1/)
135 FORMAT(14.918)
    IHAAK(1) = 197RG)
    0\cap 140 1=?.7
140 !HAAK(!) = 16448
    IMAAK(8) = 23901
    WR!TE(2,10)
    WRITE(1,15)
    WRRITE(I.2O)
    PAUSF
    NO=0
    NOD = 0
145 NRITE(1,25)
    RFAD16,3OIAMDDF,NNNB,AKTOT,C
    NODE = AMODE
    NMB = ANNB
    KTOT = AKT\capT
    NN =NMB - 10
    COTO1150.1651.NODE
150 ND = N0 + I
    IF (NP - 1) 155.155.160
155 %Q1TE(1.35)
    MQITE(1,40)
    WR!TF(1,45)
    WQITE(1,50)
960 %RITE(1.55)
    REAOIE.60ILN:
    G\capT! 之90
NTUBO420
NTUC0430
NTUSO440
NTUSO440
NTUUS450
NTURO460
NTUBC47C
NTUEO48O
NTUEC490
NTUBO500
NTU日゙つ510
NTUBOS20
NTUBO530
NTUEO54C
NTUEO550
NTUBO550
NTU゙ロつ570
NTUBO5只O
NTUBOSOD
NTU世フ6：0
ATU甘O620
NTUEO630
NTUBOS40
NTUBOE50
NTUBUS60
NTUBC6？
NTUB 6 60
NTUEC690
NTUB．0700
NTUせう710
NTU\＆つ720
NTUジこ73C
NTU甘゚ン740
NTUBO75C
NTUB0760
NTUBO77C
NTUBC780
```

```
165 NOC = N00 + 1
    |F (NDE - 1) 170.170,175
170 WGITE(1,90)
    WRITE{1,401
    WR!TE(1,85)
    NR!TE(1.50)
175 &R!TE(1.90)
    IF (NANS 180,18D,1R5
180 WR!TE(1,135)(!,!=1,NNES)
    AR!TE(1,70)({!HAAK! I),!=1,8),j=1,NMB)
    READ(6,75)(:N'GTHI(1),l=1,N*AR)
    GOTO 190
185 WR1TE(1,135)(!,1=1,1C)
    %RITE(1,T0):(:MAAR(1),1=1,8),j=!,10)
    REAC(6.75)(L.NGTH(1),!=1,瀀
    ARITE(1,135)(!,!=11,AN'B)
    WRITF(1,TO)(1!HANK(:),I=:,R), J=1,N:M:
    REAC(6,75)(1NGTH(!),!=11,NNE)
10N WRITE(1.65)
    IF (NAI) 195.195,?00
375 NR!TE11,I351(!,I=1,ANB)
    GR!TT(1,7C)!(!P+AAK(!),!=1,8),j=1,N:*B)
    READ(5,75)(S(1),!={,NM8)
    GOTO 205
200 WRITE(1.135)(1,:=1.101
    WR!TS(1,70)!(!!AAK(!),I=1,8),.!=?,?0)
    READ(6,75)(S(1),1=1,10)
    WRITE(1,125)(1,!=11, N:MB)
    NR!TE(1,70)(1!MAAK(!),!={,8),j={,N゙!
    READ(S,75!:S(1),!=11,NME)
205
    O 210 !=1.NNB
210 S(1)=5(1)**?
    心のT0 3:5
215 PAUSE
    COLL TATSW(15,NSTOP)
    GOTO(420.22C),VSTCD
220 CA:L DATSW(1,NMODE)
    GOTO(145,225), A:MODE
225 CALL DATSH(3,NKTOT)
    GOTO(230.235),NKTOT
```

isTUE0790
NTUBO806
NTUBOE10
NTUBO820
NTUEO830
NTUBO840
NTUBO850
NTUBO860
NTUBC870
NTUsc880
NTUBJ890
NTUBO90
NTUBO910
NTしうこのてつ
nTUZO930
NTUSO940
NTUBO950
NTUB0960
NTUS0970
NTUBC980
NTUSO990
NTTUEIOCO
NTUB1010
NTUB1020
ATTUB1030
NTUB1040
NTUB1050
A：TUB：OEO
NTUB1070
NTUB1080
NTUB1090
NTUEL100
NTUB1110
NTUB1120
NTUB1130
NTUB1140
NTUB 1150
NTUB1160
NTUB1170
NTUB1180

```
230 NPITE(1,100)
    REAO(6:60)AKTOT
    KTOT = AKTOT
235 (ALL DATSN(4,NC)
G?TO(240.2.4E),N(S
240 nR1TE(1.105)
    PEAD(6.11010
24.5 (ALL DATSN(2,ANANE)
    GOTO&250.255),NA:NB
250 %R!TF(1.9E)
    READ(G,GO\ANMB
    NMB = ANMB
    NN= N+&B - :0
    GOTO(160,!75),NDDE
255 GOTN(260.270), MODE
26: (Al.L DATSN15,N゙N
GOTO(265,300),NLN
26% wPITE(1,55)
    RFAE(6.50)LN
    GoTO 300
:70 CaLL CATSVI(S,NL)
    GOTO(275.280),N!
275 wPITE(1.125)
    READ{G,601A!
    I = Ai
    W2!TE(1.i2C)
    READ(6.125ILNGTHII)
ZEO こALL :OATSN'(7,NLL)
    GOTN(285,?OC),NL
20.5 'NRITE(1.90)
    !F (Mi.) 290,290,295
270 NR:TE(1,135):!,I=1,NNS)
    WRITE(I,TC)(1:HAAK(!),!={,&!,J=!,NME)
    QEAD(5.75:ILNCTH(:),!=1,NME)
    GOTO 30C
2.95 WR!TE(1,235):!,!=1,10)
    NRITE(1,70)(iIHAAK(1),!=?,O),J=1,10)
    REA{:(6,75)(LNGTH(!),!=1,10)
    WR!TF(:,135)(1,I=1!,NNQ)
    WG!TE(I,7O)(1;NAA<(:),!=1,8),J=1,NN)
```

NTUB1190
NTUB1200
NTUB1210
NTUB1220
ATU日1230
NTUE1240
NTUB1250
NTUE1260
NTUB1270
NTUB1280
NTUB1290
NTUE 1300
NTUB1310
NTUE1320
ATUE1330
NTUE1340
NTTUB1350
NTUZ1360
NTUEl370

NTUE1400

ATUW1590

```
OO こALL DATSWIP.NSI
```

GOTn(305.310).NS
305 VRITE(1.115)
REAC(5,60)AI
$1=A!$
NPTE(1.1.30)
READ(6.110)SII
$S(1)=S(1) * * 2$
310 CALL DATSN(90NS)
C.OTO(190.315).N'S
$3: 5$ GOTO(320.225), MOOE
320 LN = $6.2938 .55^{*}$ LN / C
6OTO 335
325 D $93301=1$,NNS
330 LAG11) $=5.283925$ * LNGTH(1) / C
$335 \mathrm{~F}=32$ 。
$M=c$
DO $415 \mathrm{~K}=1$, KTOT
$N=C$
$D F=64$.
62T0 345
$340 \mathrm{DF}=\mathrm{DF} / 2$.
IF OF - . $251415,415,345$
345
$\mathrm{T}_{2}=1-2.1 * *$
$350 v=n+1$
IF (N - 1) 350,360,355
$355 F=F-T 2 * D F$
360 ANAT1 $=1$.
AMAT2 $=0$.
avat3 $=0$.
AMAT4 $=1$.
GOTR(365.370), vODE
E65 BMATI = COSIL:N * F)
BVATG = BVATl
D = SINILAA \#F)
ATUB1600
NTUE1610
NTUB1620
NTUB1630
NTUB1640
NTUE1650
NTUB1660
NTUB1670
iNTUE1680
NTUS1690
NTUB1700
NTUB:7:0
N:TUB1720
NTUU1730
NTUB 1740
NTUB1750
NTUG1760
NTUO1770
NTUB1780
NTUEI790
NTUB1800
ntuelsoo
NTUEIBIO

GOTn 385
NTUK2000
$38 C F=$ SIN（F LMr．1：1）
BVATI＝COS（F＊LNG（1））
BNATL＝BMAT1
E：AT？$=0 / \mathrm{S}:!1$

$: R 5$ CMATI $=A N A_{1} 1$＊BNATI－AVAT2＊BHAT3
EVAT2＝AMATI＊SOATZ＋ANATR＊EVAT4
CMATS＝AVAT3＊EVATI＋AMATL＊BNAT？
CNATA＝AMATL＊BVATL－ANAT？＊BNAT2
AMATI＝CMAT1
GMATE $=\operatorname{SNATR}$
AMAT3＝CNAT3
3日に ムМATム＝CVAT4
If（N－1）395．395．410
395 IF（ \triangle MAT4） $400.415,455$
$400+T=-1$.
6．）Tก 4！0
$405 \mathrm{~T} T=1$.
$1: 10 T 1=T T * 1-1.1 * *<$
IF（TI＊T\％＊AVATム；340．4 5.350
$425 F O R(K)=F+$ ． 5

G7Tด 215
NTUE2C1O
NTUB2020
NTUO2030
NTUB2040
NTじう2050
NTUO2063
NTUẼ2070
NTU52030
NTU32090
NTUS2100
Nケご心2110
NTVE2izo
NTú2130
NTUE2140
NTVE2250
NTUE2160
NTUEス170
NTUE2180
NTuすこ150
A．TUS2200
ATU゙22お0
ATUE2220
ATUE
ATUE2230

Prugrail thirte,
 UEFIIITION OF PAIRAIIETERS.

$K=122 / \mathrm{Cl}$ (?ATIO OF CBUSSSECTIWHS)
EFTA=D/0.5L (MELATIVE ECCEIITilCITY)
$L=$ LEMGTI! lif Cli
$V=35000$. CH/SEC (VELUCITY (FF S(JUND)

USI: KEYEOMBD TU FITTER PARMIETEK VALUES
USE A DECIIAL P(JIIT AHIS PHESS FIUR GF FIELHKEY.
 FliaST Pis!:SS Pliogitaili STAirT KEY.

SEI IINTA İiltiaY StilTCH 25 AR:D PRESS PizOriRAil START KEY TC STOP.


```
PRORIRAA.V NITUFBE
INTUEE COHPITES F1,F2,F3,F4 OF AIN N-TUET IOIML OF TIE \forallOCAL TRMIT, 
```



```
IF TH!IS IS I|OT T|E CASF. USF liNPIJT |l!|E 2.
BHAB=|UNABFA OF TUNES.
!⿰l:P
```



```
KTOT SI!CHLU BE SHALLE:? THAN BIR FOUNL TG 4.
C=VELUCITY &F SOUINU.
USF KEYFIUNIZU TU FHTEIA THE PARSAIETERS.
USE DFCIMAL PGINTS AIII PIZESS FIII UF FIELD KOY.
```



```
        MUDE 1
        HH:1B 2
        RTUT 3
        C 4
IF YOU CHNNGE llODE,AHMB KTOT ARD C HUST LE RERINTERED.
```



```
FIRST PIRESS PROGRNNH START KF.Y.
```



```
LN=LENGTE: OF EACH: TUCE
S(1)=DIAHETEG UF THE I TII TUBF
(1=1...(IMB)
I=VUCAL CURIDS SIDE.
NH:H=aHOUT: OPENIING
tu chiange lif set data siritci: 5.
TG CHANGE GHf SIiNGLE S(1) SET DATA SWITCH:
Tu CHANGE ALL TliE S(I) SET DATA SI.ITGH: y.
LN=( )
    17.5
\(I )
    1
( )
    1.
F1= 500.1:L
F2= 1500.1:2
Fj=2500.HZ
F4=3500.1!2
iain ( )
    2.
Lii=( )
        % %
S(1)
    1 2
( )( )
    1. 2.828427
\(\mathrm{Fl}=807 . \mathrm{Hi}\)
F2= 1252.1%
F3=2sus.1:L
F4=3311.1:2
C=( )
    34000.
FI= 784.1:2
```

```
LiN=( 
```


$F 1=761.1: 2$
F2= 1181.112
$F 3=2704.112$
$F 4=3124.112$

IIODE	(1ils	kTor	C
()	()	()	$($
2.	1ε.	4.	35000.

```
LANGTH(I)=LEMGTH OF TIIS I TI: TUBE
\(\mathrm{S}(1)=\mathrm{UINAETER}\) OF THE I TY! TULE
( \(1=1\). . .idifit)
\(1=\) vocal comiss side.
WAR= MOUTH OPEHSHG
to Change ohe shagle lhotho (i) set iath shilit Ci: 6.
to Change All the lifgth(i) SET Bata shitch: 7.
tu ciange dine simgle s(1) Set mata shitcr' 8.
tu CHANGE ill the S(1) SET BATA Si,ITCH 9.
```


$$
\begin{aligned}
& \binom{11}{1.9}\binom{12}{1.7}\binom{13}{2.6}\binom{14}{1.5}\binom{15}{1.4}\binom{16}{1.3}\binom{17}{1.2}\binom{18}{1.3} \\
& F 1=377.112 \\
& F 2=1677.1!2 \\
& F 3=2744.1: 2 \\
& F 4=3482.1: 2 \\
& I=(\quad) \\
& \mathrm{S}(1)=(18 . \quad) \\
& 1.1 \\
& F 1=357.12 \\
& F 2=1613.112 \\
& \Gamma 3=2735.1!2 \\
& F 4=3510 . \mathrm{t}^{\prime} 2
\end{aligned}
$$

©

All rights reserved

