FARADOXES AROUNE THE EYFONENTLAL BORN

 fre they danger signaje ?by
HENDRTK MOI.

For the cajculition of shender coustic tubea the equation of Websten* ${ }^{*}$ (s wisely accepted. Adoptincthe 7elocity potential ox as a mancs for aerivinf eound presinure p aric particle velocity u in the followine way

$$
\begin{equation*}
p(x, t)=-p \frac{i t}{\partial t} \quad u(x, t)=\frac{\partial \phi}{\partial x} \tag{1}
\end{equation*}
$$

where ρ 亡̇ the densitity of the medium, we have on?y to solve

$$
\begin{equation*}
\frac{\partial^{2} \dot{c}^{\prime}}{\partial t^{2}}+\frac{1}{s} \frac{d S}{d x} \frac{\partial}{\partial x}-\frac{1}{e^{2}} \frac{i^{2} \phi^{\prime}}{\partial t^{2}}=0 \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \text { FIGM.5 } \\
& \text { The tuhe with } \\
& \text { now......form } \\
& \text { crosemesea }
\end{aligned}
$$

Irt order to kill twe birds witt a stone.
for the exporextial rorn we shall study now, the crosis-area (i) (x) defends on x as follows

$$
\begin{equation*}
S(x)=S_{0} e^{\operatorname{mix} x} \tag{3}
\end{equation*}
$$

Eubstitution of (3) in (a) yielis

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}+m \frac{\partial \phi}{\partial x}-\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}=0 \tag{4}
\end{equation*}
$$

[^0]The general solution of this equation cint be found by means of the method of separating lite varianles x and t

$$
\begin{equation*}
\phi(x, t)=\psi(x) \phi(t) \tag{5}
\end{equation*}
$$

where φ is a function only of x and depencis nuy on t. These two functions cari fourd by substitution of (5) in (4) and taking into consideration the boundary conoitions: ix other words by specifying how the tuje is luaded at poth enas and by what sound source it jn being driven.

In eagineerine practice one is not alawy interested in the most general solution : it is customary to ciajculate and measure networks by seeing hew they react to simusoidal drivine foress. It is a fact that, when a sinusaidal driving force is suitched to a network, the voltages and currents in the meshes of that networs will, in the long run, that is in the steady state ffter the transient phenomena have dicd aown at last, have kecome jrixsojilal ton. What eoes for electrisal netwarks goes for acouskicai networks too. So, if ṕ(x,t) or (j) is general solution indeet, it mut of necessity hold for the steady sinusoidal state. In other words, for this state

$$
\begin{align*}
& \phi(x, t)=\psi(x) \sin \omega t \tag{6}\\
& \phi(x, t)=\phi(x) \cos \text { wit. } \tag{7}
\end{align*}
$$

or
or even, in the complex notation

$$
\begin{equation*}
\phi(x, t)=\varphi(x) e^{j \mu t} \tag{8}
\end{equation*}
$$

Substitution of (E) in (4) pronnes a differential equation in $p(x)$:

$$
\begin{equation*}
\frac{d^{2} \varphi}{d x^{2}}+m \frac{d \varphi}{d x}+\frac{w^{2}}{c^{2}} \varphi=0 \tag{y}
\end{equation*}
$$

with the general solutior:

$$
\begin{equation*}
\varphi(x)=A_{1} \varepsilon^{b_{1} x}+A_{2} \varepsilon^{b} e^{x} \tag{10}
\end{equation*}
$$

where A_{1} and An take care of the boumbary conditions and b_{1} and o_{2} are the roots of:

$$
\begin{gather*}
b^{2}+m b+\frac{e^{2}}{c^{2}}=0 \\
b_{1}=-\frac{m}{2}+\sqrt[j]{\frac{w^{2}}{c^{2}}-\frac{m^{2}}{4}} \tag{11}\\
b_{2}=-\frac{m}{a^{2}}-5 \sqrt{\frac{m^{2}}{c^{2}}-\frac{m^{2}}{4}} \tag{12}
\end{gather*}
$$

Jet $u s$, for the sake of simplicity, introduce the auxiliary velocity

$$
\begin{equation*}
v=\frac{c}{\sqrt{1-\frac{m^{2} c^{2}}{4 \omega^{2}}}} \tag{14}
\end{equation*}
$$

ther combination of (8), (10), (12), (13) and (14) will finaliy result ir the complete solution

$$
\begin{equation*}
x(x, t)=A_{1} \varepsilon^{-\frac{1}{2} \operatorname{nx} x} e^{j \omega\left(t+\frac{x}{v}\right)}+A_{2^{e}}^{-\frac{1}{2} \ln x} e^{j \omega\left(t-\frac{x}{v}\right)} \tag{15}
\end{equation*}
$$

Interesting enough, this equation reresents the steady sinasoidal state as the superposition of two traveiling waves running in opposite directions:
wave ?, travelling at the speed v in the gegative direction of x wave 2, traveliing at the epeed v ir the positive direction oi x. Strange as it may seer for frequercies above $\omega_{0}=\frac{1}{2} m \approx$, the speed v is supersonic :

$$
u_{i}>\frac{1}{2} \text { ru } c, \quad v>i
$$

For $\omega=\frac{3}{2} m c, \quad v=\infty$.
Finally, for $w<\frac{1}{2}$ o c there can be no wave propagation at all, sugeesting a low-frequency cut-ofi at $\omega_{0}=\frac{1}{\varepsilon} \mathrm{mc}$.

Seewingly, we are saddled with two paradoxes:
*) We would, of course, have obtained exactly the same result if we had announced, from the beginning,
$\phi(x, t)=A e^{b x} e^{j \omega t} \quad$ as the scilation of (4) for sinusoidal vibrations.

Faredox I (the supersonic paradox) : the solution for $p(x, t)$ 'contains two waves travelling in opposite directions at a speed $v>c$.
Paradox II (the breath-iaking faradox) : the travelling waves are subiest to a ciductif frequericy that prevents the horn froon traramituing the freguency a $=0$, that is a constant, air flow like the oreathstream.
Whether we are alarmes by these paradoxes or not dopends on the view we aciont; when we take the tractical view we need not be alamed as we may arsue that the elipersonic waves are nothirg but shady chaxacters in athematical shaciow-show: they do mot 'exist' physically. In this respect it $i=$ rewarding to consider the special case of $m=0$.

Por $=0$ the exponential norn defenerates inte a tize with constant cross-area, the well-known simple orgen pipe. In this case the soluticn folde dovin to

$$
\alpha\left(x, t, j=A_{1} \epsilon A^{j \omega\left\langle t+\frac{x}{c}\right)}+A_{2} \epsilon^{j \omega\left(t,-\frac{x}{c}\right)}\right.
$$

again the euperposition of two travellines waves, but now travelling at the normal velooity of sound c. Inis nomma velocity makes these waves look lesa corspjouous arm therefore less suspicious but, neverthelese, they no not ohycieajly exjet eitrer. There is no reasca, nowever, to wiscard the alegant mathomationl possibility of decomposing a stationary weve-rattern into two fictitious waves travelling in oppostte directions. Ae wili ba shown in a special appendix (see face 9) , the paratoxes do not prevent us from derivine the general circuit parameters of the exponential horn seen as an acoustical four tanainal network. In ajdition, our simusoidal steady state metincd leads to exactily the same formants, in the case of the exponential hori, is Ungehemex's eigenvalae method. Practical oonsiderationss : however, shoula not sing us to sleep. Therefore, we may ala adopt the view of fundamertal criticism and ask curselves : why does appication of Webster's equation in the exponential case iead to the supersonic paradox ; is tris a chance nit or is there somethimf funcamentaliy wrong with Webster's equation that comes to the fore in a dranatice way in the casc of the exponential horn?

In order to pave the Hay to a possinle arswer to this question we shall first of all derive Webster's hern equation in the classical way, see fig. ?.

application of the oynamic law

$$
\frac{\partial p}{\partial x}=-p \frac{d u}{d t}
$$

$$
\begin{aligned}
& \text { applicetinn of the } \\
& \text { ajizbatic law } \\
& y=c^{2} s \\
& \text { FI GUQE 2 } \\
& \text { Derivation of Naacters } \\
& \text { horin equation. }
\end{aligned}
$$

The acmastic calculations are basect on throe laws. One of these, the law of continuity, demards that in the torn no matiter car be created nor anninilated. It is customary to apply this principle to the thin disc depicted in the left-hand figure. Per unit of time the following mass enters the surface 300 the aisc at right angles (because of the ore-dimensional strait jacket finto whiot the problem is squeezed in the Weoster method :

$$
\begin{equation*}
\rho u S \tag{17}
\end{equation*}
$$

Through the surface $3+\frac{\partial S}{\partial x} d x$ there escapes, again per unit of time, the mass

$$
\begin{equation*}
p\left(u+\frac{\partial u}{\partial x} d x\right)\left(s+\frac{\partial g}{\partial x} d x\right) \tag{18}
\end{equation*}
$$

By subtractiag (if) from $\{18$ \}, at the same time neglectine t.erme conteining $(d x)^{2}$, we see that, secming?y, the disc produces, per unit of time, the mass

$$
\begin{equation*}
\rho \frac{\partial(S u x)}{\partial x} d x \tag{19}
\end{equation*}
$$

As creation of mass is not allowed the mass described oy (19) has been outained at the cost of the density in the disc; per unit of time the aise Ioses the muse

$$
\begin{equation*}
-5 \frac{\partial \rho}{j t} d x \tag{20}
\end{equation*}
$$

As (19) mast be equal to (20) we arrive at

$$
\begin{equation*}
: \frac{\partial(S u)}{\partial x}=-S \frac{\partial \rho}{\partial i} \tag{21}
\end{equation*}
$$

This equation contains the crax of nelaster's method the crose-area S has been elcegantly included in the partial differential quotient. But how about the cost of elegance ? Webster's methob impises that the volocity u is uriform u ver the cross-area of the tube and, moreover, that the streamlines enter and leave the dise at right ancies without offering an explanation of how such a miracle might be accomplisked by goingsion in the disc. Webster has tamperé with the streamlines, transforming tho situation into a caricature.

The rext traitional step is to apply the aynamic law to the (slightiy dieferent) disc in the richt-hanci figure. This law pertains to virtual displacementis of the air partiches, that is displacements along the streamlines. The thin cyainder is thought to move under the influence of a force furfished by the pressure difference exerted or the enc surfaces. The surplus force in the positive direction of x equals

The froduct of mass and acceleration of the cylinder is equal to

$$
\begin{equation*}
\rho B d x \frac{d u}{a t} \tag{23}
\end{equation*}
$$

The dynamic law requires that (22) is equal to (23), which leads to

$$
\begin{equation*}
\frac{\partial p}{\partial x}=-p \frac{d u}{d t} \tag{24}
\end{equation*}
$$

We cirect the attention of the reader to the fact that in the right-hand memeer there appears a total derivative. Expression (24) is not a typjcal Wetster invertion because S does not appear in it. Nevertheless, sound pressure p is supposed to be uniform over the crossmareal S winereas the air particles are supposed to move along streamines that are paral1ed. to the x - axis. In other words, also the dynamic law is applied to a caricature of the streamlines.

In order to be atle to formulate the adiabatic law it is supposed that the deneity p of the medium performs very small variations around it rest value ρ_{0} in the following way

$$
\begin{equation*}
\rho=p_{0}+s \tag{25}
\end{equation*}
$$

The amall quantity ss is cialled the condensation. The adiabatic Law says

$$
\begin{equation*}
p=c^{2} s \tag{26}
\end{equation*}
$$

Now the scene is set for the cerivation of Webster's equation. We must tate measures to ensure that we anrive at a innear differential equation. Tc hegin with, we replace p by p_{0} and
$\frac{\partial p}{\partial t}$ by $\frac{\partial s}{\partial t}$ in (21), so that we obtain

$$
\begin{equation*}
\rho_{0} \frac{\partial(S u)}{\partial x}=-s \frac{\partial s}{\partial t} \tag{27}
\end{equation*}
$$

The next step is to linearize (2.4) by replacing the total derivative of u with respect to t by the partial derivative. In general, we have

$$
\begin{equation*}
d u=\frac{\partial u}{\partial t} d t+\frac{\partial u}{\partial x} d x \tag{28}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d u}{\partial t}=\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x} u \tag{29}
\end{equation*}
$$

For the small velocities we meet in practice the second term of the right-hand member of (29) may be neglected. We then obtain

$$
\begin{equation*}
\frac{\partial p}{\partial x}=-\rho_{0} \frac{\partial u}{\partial t} \tag{3;0}
\end{equation*}
$$

at the same time replacing p by p_{0}.
We are now in a position to introduce the velocity potential ф defined in the following manner

$$
\begin{align*}
& \mu=-\rho_{0} \frac{\partial \phi}{\partial t} \tag{31}\\
& u=\frac{\partial \phi}{\partial x} \tag{32}
\end{align*}
$$

This choice is based on the dynamic law (30) because when we substitute (31) and (3र) in (30) we find that

$$
\begin{equation*}
-\rho_{0} \frac{\partial^{2} \phi}{\partial t \partial x}=-\rho_{0} \frac{\partial^{2}}{\partial x \partial t} \quad \text { indeed. } \tag{33}
\end{equation*}
$$

By combining (2も), (27), (Jj) and (32) we easily arrive at

$$
\begin{equation*}
\frac{\partial^{2} \delta^{2}}{\partial x^{2}}+\frac{1}{S} \frac{\partial S}{\partial x \partial x} \frac{\partial \phi}{\partial x}-\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}=0 \tag{34}
\end{equation*}
$$

Here is Webster's horn equation at last.

It describes a loss-free, one-dinensional model of ihe eereral, siencier accuistic tube. Its derivation is the resbit of an idealiaation of time streamlines, followed by the usumb linearizatior. for small amplitudes.

When is a coobel a sood mordel, ir: spite of the fact that i.t does not fit piysical reality in the tube to a T ? The Engwer depends on the critorion cne chooses for judgring the wortriwhileness of cextain nionel. For bronetic appliciations with H view to the vocia tract one is inclined to say that the Webster model sholid produce the correst furmarts, takirig for grinted one knows how to define anc how to measure the formants. In this respect no high accuracy mizy be expected nor needed as the speech code is basca on contrasts between formatis rather than on absolute positions of the formants. As; far as T can jude at the moment the Webster model j.s a workitie model but this does rot remove my grudes arainst the apersonic paradox. I am toyinf with tie idea, that it is the tampering ith the streamlines thiat is at the root of the suparsonic paradox. ghis idea is supportec by the case cf the corical horn we shall elaborate to some extent in the appencix (Eee pase 13 j. Interestinely enough, tre rypotieticsl travellire wayes in the conical hom travel at the normal speed c, in spite of the fact that we aphly Wescter's korn equation.

$\therefore B E N B+X$

1. The genersl circuit parameters etc. of the exponential horn.

We shaly first of 312 combine (1), (8) ars (10) which yielou $p=-\omega \frac{\partial \phi}{\partial t}=-j \omega_{p}\left[A_{1} \varepsilon^{b_{1} x}+\hat{R}_{2} \varepsilon^{b_{2} x^{x}}\right] \varepsilon^{j \omega i}$
$\left.U=S \frac{\partial \phi}{\partial y}=B I A_{i} b_{1} \varepsilon^{b, x}+A_{2} b_{2} e^{b_{2} x}\right] \epsilon^{j 0 t}$

The reads will have noticed we nave introduced the volume velocity

$$
\begin{equation*}
\pi=30 \tag{37}
\end{equation*}
$$

The corstants A_{1} and A_{2} may be related to the values of p and U for $x=0$. These values deperi on the way of driving as well as on the way of loading the horn. Before we do so, we take the linerty to onit the factor
$e^{j(\mu)}$,
keeping well in mind to re-introauce it whenever necessary. In thist way p and U assume trie character of compler amplitudes. For the sake of simplicity we shall not change their notation. So, for $x=0$ we have

$$
\begin{align*}
& p_{0}=-j \omega\left[A_{1}+A_{2}\right] \tag{38}\\
& u_{0}=E_{0}\left[A_{1} b_{1}+A_{2} b_{2}\right] \tag{39}
\end{align*}
$$

Solution of (38) and (39) yielas

$$
\begin{equation*}
A_{1}=-\frac{b_{2}+\frac{b_{0}}{b_{0}}+\frac{u_{0}}{b_{0}}}{b_{1} \frac{b_{0}}{j \omega_{0}}+\frac{b_{0}}{b_{0}}} \tag{40}
\end{equation*}
$$

Fhe next step is to substitute (40) and (4) in (35) and (36), at the same time omitiang the factor $e^{j \omega t}$. As, in four pole theory, we are interested in the relation betmeen the quartities
 the length of the horr. We then set, after some elaboration

We may write these twe expressions as iollows, at the same time defining the cenerai circiit, parameters A, B, C anciay

$$
\begin{align*}
& f_{1}=1 F_{0}-i U_{0} \tag{44}\\
& U_{1}=-V_{0}+A U_{0} \tag{45}
\end{align*}
$$

It is exsy to prove t!at

$$
\begin{equation*}
A D-E C=1 \tag{46}
\end{equation*}
$$

which procerty aliows us to sonve p^{2} ound II from (44) and (45) as follows

$$
\begin{align*}
& U_{0}=A p_{1}+B U_{1} \tag{47}\\
& U_{0}=C P_{1}+B U_{1} \tag{48}
\end{align*}
$$

These are the weli-known four-fode cuations for sendiref from $x-0$ to $x=1$, see fig. ? , phey permit ua, among othew

> direction of sondire
> FI OUK

The (oxponertial) horr soct: as a
four terminal retwork.
things, to preaict the vehaviour of (exponential) horns in cascade.

It is possible to solve the volume velocity U_{2} in the molth operinf from (4 ?) and (48) by jntroducirn the radiation impedance Z_{1} of the mouth opening, defines as

$$
\begin{equation*}
p_{1}=v_{1} z_{2} \tag{49}
\end{equation*}
$$

and the internal impedance Z_{0} of the throat defined as

$$
\begin{equation*}
p_{0}=e-U_{c} 3_{0} \tag{50}
\end{equation*}
$$

where e represents the ' acousto-motoric force of the throat. In phonetic practice, however, it is not necessary to go all the may. There one poes to the extrenes of supposing $p_{1}=O$ in the mouth opering and $U_{0}=0$ at the throat. Equation (4ε) shows that these assumptions rake serse only for those frequencies for which $D=0$ As (45) clearly indicates these are the frequercies for which

$$
\begin{equation*}
b_{2} \varepsilon^{b_{2}^{1}}-b_{1} \epsilon^{b_{1}^{1}}=0 \tag{51}
\end{equation*}
$$

By suketitutine (12) a@o (13) in (5i) we finslly arrive at

$$
\begin{equation*}
t_{i n}: \sqrt{\frac{w^{2}}{c^{2}}-\frac{m^{2}}{4}}+\frac{2}{x} \sqrt{\frac{u^{2}}{c^{2}}-\frac{m^{2}}{4}}=0 \tag{52}
\end{equation*}
$$

This is exactly the sunc foryula as reached uy reand of the sigenvalue method. *)

It is interestinf to notjce, thiat the pariadoxal cut-off frequency a $=\frac{1}{2} \mathrm{~m} c$ comes to the fore here as a reai formant as jt obeys expresisior (5i) .

For $m=0$, the case of the ture with conetant cross-area, ($;$;) recuces to

$$
\cos \frac{u l}{c}=0, \text { as it shouid do. }
$$

Moreover, (52) is sensitive to the sign of m, also a necessary property.
----...........-.
*)Gerold Unceheuei, ELemente einer akustischer Theorie der Vokialartikulation (Sprirater-Verlag ११GZ) .

2. The case of the conicifu horn.

In the cise of the conical horn

$$
\begin{equation*}
y=a x^{2} \tag{53}
\end{equation*}
$$

so that Webstor's equation reduces to

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{2}{x} \frac{\partial \phi}{\partial y}-\frac{1}{c^{2}} \frac{\partial^{2} \phi}{0 t^{2}}=0 \tag{54}
\end{equation*}
$$

Note that the constant a doss not appes: in the wave equatione
For the steady sinusoidial state we tave

$$
\begin{equation*}
\phi(x, t)=\varphi(x) e^{j \omega t} \tag{j}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}}+\frac{2}{2}-\frac{d x}{d x}+\frac{d s^{2}}{e^{2}} p=0 \tag{56}
\end{equation*}
$$

with the solution

$$
f(x)=\frac{A_{T}}{x} \varepsilon^{j \frac{1}{c} x}+\frac{A_{e}}{x} \in-\frac{1}{c} x
$$

so that

$$
\begin{equation*}
\gamma(x, t)=\frac{A_{1}}{x} e^{\left.j \omega\left(t \cdot \frac{Z}{\varepsilon}\right)+\frac{A_{2}}{x} e^{j \omega\left(t-\frac{x}{6} ;\right.}\right) ~} \tag{58}
\end{equation*}
$$

S

This equation agorn controntis us wila two (fictitiouz) waves travellibe in opposite direction: but at the normisl inpeed c. We must be very careful ir: drawing our conclusions now ! As yegards che tampring with the streamines webster's model is ro better for the comical horn than for the exponential horrn. It leads, however, to a wave equation that produces no supersonic parisome this wave equation, by tire way, inopires us with a better model for the conical acri: wion we replace the lincar varjakle x in (54) by the radial variable r we get :
$\frac{\partial^{2} \phi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \phi}{\partial r}-\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}=0$
This is the well-known was equation for spherical waves unmarred by the supersonic faradox. The conical horn deserves a model better than the Webster model: the spherical model with wave propagation in radial directions and spherical wave fronte.
so, in ry opinjon we have Jearned the following lessor:
we chould adayt the model to the shape of the horn ans not, like Webster did, squeeze an arbitrary shape into a fixed streamline model.
3. Transformaticn of the superzonic paradox into a phase paradox.

Until now we have wrjtter $\phi(x, t)$ in the shape of formula (15), in that way creating the image of two waves travelline at the sucersonic speed v. Moreover these waves are aiflicted by a paradoxal cut-off frequency . It is equally possible, however, to arrange wave 1 and wise 2 in the following manner
wave 1

$$
-\sin -j x\left(\frac{\omega}{c}-\sqrt{\frac{m^{2}}{c^{2}}-\frac{m^{2}}{4}}\right) \quad j \sin \left(t+\frac{x}{c}\right)
$$

c.
wave 2

$$
-\operatorname{drx} \quad j x\left(\frac{w^{c}}{c}-\sqrt{\left.\frac{w^{2}}{c^{2}}-\frac{m^{2}}{4}\right)} j \omega\left(t-\frac{x}{c}\right)\right.
$$

c \qquad
imposing or us the image that the waves travel at the normal velocity of sound c but suffer from a strange phase angle

$$
\begin{equation*}
p(x, w)=x\left(\frac{w}{c}-\sqrt{\frac{w^{2}}{c^{2}}-\frac{m^{2}}{4}}\right) \tag{62}
\end{equation*}
$$

thal depends on x and w.

Sine breath-taking faradox is still present becianse, as (60) and (6T) clearly show, helow the frequency $\omega_{0}=\frac{1}{2} m a n o$ wave propagation at the speer c is possible either.

Introduction of the phase garsdox does not remove the difficulties : it merely shifts them to another domain. Nevertheless, the phase paradox, allowing the waves to travel at the speed c, gives us a better insight into the nature of, for instance, the twin-tube model dopictec in fipure 4 :
speed c

phase
Jiscontjonuity

> FI G! RE 4
> . The wedves. in the twin-tube model

Becouse the tubes have a constant cross-areat, irs earal of them waves are allowed to travel at the speed c without experiencing phase troubles hecause, 3 is apparent frout (62), $;=0$ for $m=0$. Wher we consider the twin-tube as a unit, however, there is a sudden step in the phase at tha joint where both tudes meet. This places the twin-tuke in the sam: class as the exponential webster model, it being understood that the wiase troukies in the exponential horn are distríuted continuously along its ieneth.

4. Or the riature oi the boundary corditions.

This fins? paragraph draws the attention to the necessity of clearly defining the bowndery conditions when one undertakes to predict the character of the vibrations in a tube that is :upposed to obey Wehster's (or anybody's) horn equation.

FIGURE 5

$$
\begin{aligned}
& \text { THE PASSIVE CASE } \\
& \text { ino external excitation leadimb } \\
& \text { to the eigenvalue method. }
\end{aligned}
$$

To begin with, in any case the inter-faces with the outer world at the positions $x=0$ and $x=1$ uust be considered as pistons that move to and fro in the operings, hindered by the external impedances Z_{c} and Z_{1}.

When we suppuse, as is show in fig. 5, that one jimits oneself to the case where the pistons are passively reacting merely to the vibratione inside the tube, we have wilfully manoeuvered ourselves into ar eigenvalue problem. We then find that vibrations in the tube are exclusively possible in certain moies, namely, damped oscillations at prescribed, discrete frequencies. In tre special case that $Z_{0}=\infty$ and $Z_{I}=0$, these oscillations are undamped pure sines, in that way giving rise to a sort of acoustic perpetum mobile.

When, however, we consider the horn as a means for transmitting enerey from a lousspeaker membrane to a listener or from a throat to the mouth opening, we have to calculate the situation depicted in fig. 6.

When we now drive the horn from a sinusoidal source, seen either as a constant velocity fed in parallel or as a constant pressure fed in series with U_{0}, we are able to calculate, in the stationary stiate, for instarse, the velocity U_{1} in the mouth opening. We then find that the amplitude of U_{1} reaches a maximum for certain frequencies, the so-called resonance frequencies. The less damping the system shows, the sharper these resonances turn out to te. In the special case that $z_{0}=\infty$ and $Z_{2}=0$ the resonance frequencies fourd via the transmission method coirciae with the discrete natural frequencies found via the eigervalue method. Moreover, in this: special case the resoriances tiarn out to be so shirp that there is zero amplitude for all frequencice that differ from the resonance frequencies.

The, matheratically speaking, legnl transmisrion method is not to be blamed for the exjstence of the supersonic paradox: this parado: remains a typical consequence of Webster's equation.

[^0]: *) A.g. Wobster, Proc. Natl. acad. Sci. (U. (U.) 5. 275-282 (1919)

