In the investigation I am going to describe to you, a number of 30 listeners were aked to determine, whether they thought that the second of a pair of treree artificial vowele was more like the first or more like the third vowel presented to them. 940 pairs of three artificial vowels were preserted to the listeners, the firsit and the third artificial vowel being fixed and the second being variable. The fixed points originated from the vowel triangle, as it can be drawn for the Dutch vowels (see fig. 1), thus furnishing us with four scales: $A D, B D, C D$ and $A C .33$ points equally divided alorg each of these scales were taken as the variable vowellike sound. The stimuli werc preserted in such a way that the first variable in a scale had the fixed vowellike sounds - for example in the scale ΛD - in a sequence $A D$, the second next variable in a sequerice DA , the thira variable nad again Al) and so on. Every variatle had a reserved position of the surrounding fised points as compared with the pair preceding and the pair following. Thiss applies to any of the scales mentioned. The pairs of three rowellike sounds coming from the four different scales were presented in random order. The listeners were asked to score their opinion in a linear scale (see fig. 2). The first rowellike sound - a fixed point in the formant scale - has its position ft the extreme left of the scale, the third vowellike sourd, being also a fixed point in the formant scale, at the extreae right of the same scaie. The subjects were instracted that also the position within ore of the seven parts of the scule was of importance. The listeners were not told that they were going hear artificial vowels. The instraction mentioned only three sounds. The subjects were recruited from a departnient in which no information about vowels, vowelsystems and the vowel triangle was given.

Winen listening to an unfamiliar vowel one is inclined to relate this vowel to a known rowel class. We wanted to gain some insight into the grounds on winch subjective judgments as to vowel difference or vowel resemblance are made. Therefore we took as our starting noint the problem, to what degree vowellike sourids, the formants of which are quite near one another, mintht be judged to be differert. ihe backione of this problem is the question whether a distance, that could be expressed in formant frequencies, could be scaled and related to trese frequency distances. In other words: are physical distances correlated with perceptual distances?

Ir order to produce the vowellike sounds mentioned above, we used a vowel gererator, consisting in a pulse gexerator and two TCF-chaine. The damped oscillations prodiaced were summated and controlled as to damping coefficiert, the amplitudes of the two formants produced ard as to the respective frequencies of F i and $F 2$. The pulse generator, simulating the fulses given by the vocal cords, was adjusted at a frequency of $160 \mathrm{c} / \mathrm{s}$. Pulse shape, damping coefficient ard amplitude were set in such a way as to bear optimal resemblance to these parameters as they eccur in actual Dutch vowels. The artificial vowels were recorded on tape at a same level and at electronically controlled distances ir time. Every pair of three vowellike sounds was recorded twice at a came fixed distance in time anc separated from the preceding and followine pairs by anotiex pause of longer duration, which was also electronically controlled.

The subjecte were isolated in boxes. The subjects got a printed, carefully worded instruction, allowing control by the experinenter.

Nevertheless some of them did not succeed to respond in thie correct way. The responses of the subjects were made on preprinted forms, allowing a quick coding for processing on an electronic computer.

As a first step we tested the hypothesis that scaling is possible and that the subject's responses rise monotonously with the stimuli.

We therefore applied Kendall's rank correlation test.

Out of 30 subjects 25 produced rark correlation coefficients sufficiently hish to conclude to positive rariking within a 99.5 percent reliability.
5 subjects hed very low or even slichtly regative rark correlation coefficients. So that in their case we could not coriclude to signisicant ranking. The responses of these 5 subjects were therefore discarded.

The accuracy of the scaling is expressed by the fact that the standard deviation for the response positions is about one seventh of the Length of the whole scale. This applies to all scales and all stimali.

Although the sequences in the perceptual and tre piysical scale were stríkingly correlatec, there was no tendency towards a linear relation. In our experiment - just as in so many other scaline experimeris - our subjects showed a reluctaricy to score in the extremes of the scajes.

Furthermore sux subjects showed a tendancy to score high in relation to a linear scaite. Thus ir the scele Alt subjects responded more in the direction of $[$ than is justified by the position of those stimuli ir the physical scale.

On the raw data a process of dicital filtering was performed in order to obtain smooth curves. (fig. 3,4,5,6).

It is justified to apeak about a perceptive vowel triançle.

- 4 -

If we map the physical vowel triangle on the perceptive triangle we notice that some areas are preferred, while others are avoided. The distribution of these areas seems to be related to the distribution of the Dutch vowels in the perceptual triangie.

Whether a sative yorel system plays a role in the evaluation of perceptual distance between vowellike sounds can only be estatlished ry repeating our experiment with su: jects with different mother tongues.

Further investigation in this field is in progress.

Fig. 1.

Fig. 2.

Schaal 15

Fice in semothed cerrorids I (AD).

Schas 25

Fig. 4. gmoothed curve scale 2 (ED).

Schaal 35

Fig. 5. Sreoothed curve scale 3 (CD).
Schal 45

Fig. 6. Sonootherd curve acale 4 (AC).

