This paper deals with the application of Information theory to the transmission of natural and artificial vowels. I want tc start with a brief explanation os the main concepte of information theory for those rot acquainted with them.

Information theory describes the phenomena of transmission as perceived by ar outside otsserver who has full knowledge of both sides of the transmission channel.

The symbols to be coced by the transnitting part of the channel - in our sase in sounds - will be referred to as input, the symbols decoded et the receiving enis as output.

In this case we are oniy interested in the most simple situation in which the autocorrelation of the string of luput symbols is zero, which means that the input symbors are in a random order. Incidental. Iy this does not exclude. the possibility that the decoding process is affe:ted by the ectual succession of two or more sounds. The num.. hes of different symbols will be finite.

DLe to imperfections or instability of iransmitter and receiver, distorifon or interference. tile string of nutput symbols will not be an exact replica of the strine cf input symbuls. We speak therefore of a transmission charnel. with noise.
I.et the rumber of different symols be n.

The performance of the sinanel cat he defioted by a table of confusion probabilities: (2ee fig, 1)

INPUT		OUTPPUT			
		S_{1}	S_{2}	S_{k}	S_{n}
S_{1}	P_{10}	p_{11}	p_{12}	$\mathrm{p}_{1 k}$	$\mathrm{p}_{1 n}$
S_{2}	p_{20}	p_{21}	p_{22}	$\mathrm{p}_{2 k}$	$\mathrm{p}_{2 n}$
S_{j}	$\mathrm{p}_{\text {jo }}$	$\mathrm{p}_{j 1}$	$\mathrm{P}^{\mathbf{j}}$.	Eik	$\mathrm{P}_{\text {jn }}$
s_{n}	p_{nO}	$\mathrm{T}_{\mathrm{r}_{2}}$	F_{12}	$p_{n k}$	$p_{n n}$
Total	1	P_{01}	p_{02}	$\mathrm{P}_{\text {Ok }}$	P_{On}

$P_{j 0}=$ probability that S_{j} is the input symbol,
$\mathrm{P}_{\mathrm{Ok}}=$ probability that ${ }^{\circ} \mathrm{k}$ is tha output symbol,
$p_{j k}=$ probability of the combination of S_{j} as input symbol and S_{k} as output symool.
In a forced-choice situation

$$
\sum_{j} p_{j O}=\sum_{k} p_{O k}=\sum_{j} p_{j k}=1
$$

For a noise-free charnel

$$
\begin{array}{ll}
p_{j O}=p_{j k}=p_{O k} & \text { for } j=k \\
p_{j k}=0 & \text { for } j \neq k
\end{array}
$$

For a channel with no correlation between input and output (that means no transmistion at all, the receiver is only guessing)

$$
\begin{aligned}
p_{j k}=p_{j 0}
\end{aligned} \quad p_{0 k} \quad \text { for } \quad \begin{aligned}
j & =1, \ldots . n \\
k & =1, \ldots . n
\end{aligned}
$$

A real channel will be somewhere between these extremes. Now we have to deal with different amounts of information. The information of the input H_{x}, that of the output H_{y} and that of the combination of input and output $H_{x y}$.

The unit of information is called sit.
One bit is the amount of information contained in the answer to a question to which there are two mutually exclusive answers with equal probability of occurrence. 'Take for example the information contained in the position of a coin. So the amount of information in Bits is the minimal number of questions of the type just mentioned necessary to obtain full knowledge. The amounts of information can be easily calculated using trie formulae of fig. 2.

$$
\begin{aligned}
& H_{x}=\sum_{y}-p_{j O}{ }^{2} \log p_{j 0} \\
& H_{y}=\sum_{k}-p_{0 k}{ }^{2} \log p_{0 k} \\
& H_{x y}-\sum_{k}-p_{j k}{ }^{2} \log p_{j k}
\end{aligned}
$$

fig. 2

When informatior is transmitted by the ciannel we have the following unequality

$$
\mathrm{H}_{x}+\mathrm{H}_{y}>\mathrm{H}_{x y}
$$

This means that given the output and our knowledge about the confusion matrix, we can make a good eness at the input.

The relations betwern H_{x}, H_{y}, and $H_{x y}$ can be shown in simm ple Venn-diagrams. (See fig. 3)

$$
T_{x y}=H_{x}+H_{y}-H_{x y}
$$

fig. 3

The corss-section betwe:en H_{x} and H_{y} is called the transmission $T_{x y}$.

The physical meaning of the transmission is that part of the information of the input which we know when the output is known, in other words, the transmission is the information transmitted by the channel.

In order to calculate the transmission we have to make use of the confusion frequency matrix resulting from an experiment. (fie, 4)

CONFUSION PREQUENCY MATRIX

InPrem	TOMAL	OUSMuT			
		3^{3}	S	S_{k}	S_{n}
S_{1}	m_{10}	m_{11}	m_{12}	$\mathrm{m}_{1 \mathrm{k}}$	$m_{1 n}$
S_{2}	m_{20}	m_{21}	m_{22}	$\mathrm{m}_{2 k}$	$\mathrm{m}_{2 n}$
${ }^{\text {S }} \mathrm{j}$	m_{jC}	${ }^{m}$		m_{jk}	$\mathrm{m}_{\text {.jn }}$
${ }^{3}$	m_{nC}	$m_{n 1}$	$m \mathrm{n}$?		$m_{n n}$
TUTAL	M	m_{01}	m_{02}	m_{OK}	$\mathrm{mon}^{\text {n }}$
		fie. 4			

In this table the m^{\prime} s represent observed frequencies, the subscripts have the same meaning as in the probability matrix.

Taking the quotients \mathbb{M} / M as best estimates for p^{\prime} 's we can calculate the transmission.

The necessary calculations can easily be programmed for evaluation by an eiectronic computor.

All our calculstions were carried out with the IBM 1130 system of the Trstitute of Phonetic Sciences of the Uriversity of Amsterdam.

To get some insight into the process of vowel perception we applied information theory to some data published in the literature.

We started with the well-known experiment by Peterson and Barney on formant measurements on vowels of different speakers. (JASA 1052) (fig. 5).

iig. 5

Suppose we have a vowelmecognition system that rolates the sounds within a specific contour to ore and only one vowelclass.

We determined the confusion irequency matrix for such a
system shown in fig. G by a simple counting procedure, any sound falling in the crossmsection of two areas being scored as 0.5 for each area.Ali frequencies are maliplied by 10 to avoid fractions.

As we see, tiee information of the jnput is 3.32 Bits, the trans~ mission 2.19 Bits.

The same sounds were presented to a eroun of Iisteners. Feterson and Earney published the confusion matrix which is shown tere as fig. ?.

When we apply our formulae to their matrix we find a transmission of 2.98 Eits.

It appears that human listeners a Feteer than our hypothetic. a] vowel reccgnition syster. Gux conclusion must be that man usee factors anditional to the first iwc formants. These factors might be findamerital irequency, ouration, the connection with surrourdine consorarits, ard kncwledge of the particular powel system of an individual speaker. Although the speechsounds of differert speakers were raindomized, some knowledge of the positiori of the vowel system in the two-formant plane was available, due to the hish correlation between fundamental freg. and the formarit frequencies (MOL 1964)*.

As no confusion occurs winen we listen to the sounds of a familiar vojec we cari list and add ip our data as follows.

Information of input
3.32 Bits

Contributed by forma: positions
alone maximal 2.19 Bits
Contributed ky otker iactors thar.
specific knowledge otr a syezkers vowel
system at least 0.79 Bits
Sum of these factors 2.98 Pits
Contributed by specif゙ic knowledee of an individual speakers vowa? system
0.34 Bits
3.32. Fi.ts

The next data to ke mamined are purlished jy Cohen, Slis \& 't Hart (Pronctica 1957) in an anticle entitle "On Tolerarce and Intclerance in vowel perception".

Ihey presentet a highiy interesting confusion matrix for a system
of 12 sjnthetic vowels. They used 12 fixed two-formant positions and introduced duration as an extra parameter. The spacing of the vowels in the F_{1}, F_{2} glane is somewhat exaggerated. The matrix is shown in fig. 8.

The information of the input is 3.62 Bits in formant positions and 1.55 Bits in duration which is redundant.

The itransmission is 2.93 Eits. As the experimental conditions are comparable with the situation in which a person is listening to the sounds of one individual speaker, part of the information is lost. (Of course, some of the factors operating in experiments where monosyllanic words are used are absent in experiments with isolated sounds)

This low transmission i.s in agreement with our findings. It seems that a transmisision charmel operates less stably with artificial vowel-like somas than with natural vowels.

From the results of the scaling experiment described by my collegue Meinsma an estimate can be made as to the confusion occuring between different areas of the perceptive vowel-triangle. We estimate the following data:
$H_{x}=3.6$ Bits
$H_{y}=3.6$ Bits
$H_{x y} \approx 5.3$ Bits
$T_{x y} \approx 1.9$ Bits

This means that the duration factor introduced by Cohen and collaborators must have contributed about 1 Bit of the 1.15 Bits of partly redurdant transmitted information.

The present study is part of a larger programme which aims at the generation of vowel systems of optimal efficiency for the production of artificial speech.

[^0]| FORMANT MEASUREMENTS | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNPUT | TOTAL OUTPUT | | | | | | | | | | | |
| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ∞ |
| 2 | 740 | 680 | 60 | 0 | 0 | C | \cdots | 0 | 0 | 0 | 0 | ∞ |
| 2 | 750 | 30 | 650 | 55 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 1 |
| 3 | 755 | 1 | 96 | 572 | 11 | 1 | 1 | 1 | 1 | 1 | 71 | |
| 4 | 740 | 1 | 2 | 221 | 566 | 26 | 1 | 1 | 1 | 1 | 21 | |
| 5 | 730 | 0 | 0 | 0 | 30 | 610 | 45 | 35 | 0 | 5 | 5 | |
| 6 | 760 | 3 | 3 | 3 | 3 | 5 ? | 603 | 83 | 3 | 3 | 3 | |
| 7 | 740 | 2 | 2 | 2 | 2 | 22 | 92 | 5?2 | 12 | 32 | 2 | |
| 8 | 740 | 2 | 2 | z | 2 | 12 | 2 | 2 | 567 | 92 | 57 | |
| 9 | 750 | 1 | 1 | 1 | 1 | 41 | 1 | 12 | 76 | 491 | : 26 | |
| 10 | 775 | 2 | 22 | 97 | 52 | 2 | 2 | 2 | 7 | 127 | 462 | |
| TOTAL | 7480 | 722 | 837 | Q 52 | 667 | 767 | 747 | 707 | 667 | 752 | 262 | |
| $H(X)$ | 3.32 | $\mathrm{H}(\mathrm{Y})=$ | 3.31 | HIXY | 4.45 | P(XY) | 2. | | | | | |

```
// XEO
PETERSONGGARNEY LISTENING EXPERIMENT
INPUT TOTAL OUTPUT
\begin{tabular}{rrrrrrrrrrrr}
1 & 10280 & 10267 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
2 & 10279 & 6 & 9549 & 694 & \(C\) & 0 & 3 & 0 & 0 & 0 & 0 \\
3 & 10277 & 0 & 257 & 9014 & 945 & 1 & 1 & 0 & 0 & 0 & 26 \\
4 & 10278 & 0 & 1 & 300 & 9718 & 2 & 3 & 0 & 0 & 2 & 52 \\
5 & 10273 & 0 & 1 & 0 & 19 & 8936 & 1013 & 0 & 0 & 15 & 39 \\
6 & 10279 & 0 & 0 & 1 & 2 & 590 & 9534 & 71 & 0 & 228 & 7 \\
7 & 10279 & 0 & 0 & 1 & 1 & 16 & 51 & 9924 & 76 & 672 & 14 \\
8 & 10279 & 0 & 0 & 1 & 0 & 2 & 0 & 78 & 10196 & 0 & 19 \\
9 & 20277 & 0 & 1 & 1 & 8 & 540 & 127 & 103 & 0 & 9476 & 21 \\
10 & 10279 & 0 & 0 & 23 & 6 & 2 & 3 & 0 & 0 & 2 & 20243
\end{tabular}
TCTAL 102780 10273 9:13 1004; 10906 10080 10737 !0245 1C257 9956 10422
H(X)=3.32 H(Y) = 3.32 H(XY) = 3.66 F(XY)=2.98
```

fig. 7

818. 8

[^0]: * Proceedinigs of the 5th Irtern. Congress of Pnonetic Eciences.

