Speech Technology Project:
Comparing models of L2 vowel perception using
simulation and visualization

Universiteit van Amsterdam

Klara Weiand, 0529478
Jelle Kastelein, 0026549

13th September 2006



CONTENTS

Contents

Introduction

Experiments and previous work
21 Vowels . . . ... ... ........

Visualizations

3.1 Symbolic Plot . . . ... ... .. ..
3.2 Bordered Plot . . . . ... ... ...
3.3 EllipsisPlot . . . ... ... ... ..

Simulations

4.1 Classifiers . . . ... ... ... ...
4.1.1 Nearest Neighbor . . . . . ..
4.1.2 Naive Bayes . . . . ... ...
4.1.3 Stochastic OT and GLA . . .

Experiments

5.1 Monolingual experiments . . .. ..

5.2 L2 acquisition modeling experiments
5.2.1 Increasing proficiency levels .

Results

6.1 Monolingual Experiments . . . . . .
6.1.1 Vowel Space Mapping

6.2 Cross-language Experiments . . . . .

6.3 Discussion . . . . ... ... ...

Conclusions

Future Work

Appendix: Software Documentation
A1l Plotting . ... ... ... ......
A2 Modeling . ... ... ... ....

A.2.1 Nearest Neighbour & Naive

NN

=~ W w W

ENTEN IS SV

10
10

11
11
12
13
14

15

15



2.1 Vowels

1 Introduction

Second language acquisition (L2A) is a field of lin-
guistic research in which learning plays a vital role
(indeed, it is learning). The sensible step thus is to
look into other fields of research that have experi-
ence in dealing with similar types of learning prob-
lems. With this in mind, we present here a step
towards a combined effort on this subject, between
the sciences of Phonetics and Artificial Intelligence.

In this paper, we will investigate the workings
of several supervised machine learning algorithms
from a phonetic point of view. We will show the
value of using such techniques to model the dy-
namics of the vowel space during L2A tasks, and
provide some initial insights into how a model of an
unexperienced subject can be built that bases cate-
gorizations in a non-native language on a mapping
from the configuration of the native vowel space to
the non-native one. Furthermore, we will compare
several different learning algorithms with respect
to an empirical experiment carried out on human
subjects’.

We will start by giving the necessary background
information on the empirical experiment that is to
be modelled. We will then proceed by introducing
various visualization techniques that will be helpful
for data analysis. Finally, the larger part of the
article will be devoted to the learning algorithms,
the simulations, and their results.

2 Experiments and previous
work

The empirical data used here was gathered in an ex-
periment where native Dutch speakers and learners
of Dutch with Spanish or Portuguese as their na-
tive language were confronted with 339 synthetic
vowels that differed in their F1 and F2 frequencies
and durations. There were 14 different F1 values,
10 different F2 values and three different durations,
0.1, 0.14142 and 0.2 seconds.

Participants were asked to label the vowels ac-
cording to their L1 orthographic labels. The non-
native Dutch participants additionally classified the

1For the remainder of this article, we will use the term
‘empirical data’ to refer to the data derived from human sub-
jects, and the term ‘simulated data’ to refer to the data de-
rived from the models produced by the learning algorithms.

vowels using Dutch orthographic labels in a sep-
arate experiment. A final set of experiments re-
quired participants to use both L1 and L2 labels
for categorization.

The data were summarized in tabled and the
most frequent responses were plotted with regards
to their position in the vowel space. Some pre-
liminary results were found using these techniques,
e.g. differences in Dutch vowel boundaries between
native Dutch speakers and beginning learners of
Dutch, that showed an influence from the native
language and decreased with increasing proficiency.
An ANOVA run on a dataset for Spanish subjects
categorizing stimuli with Dutch vowels, over 4 lev-
els of increasing proficiency, revealed this effect to
be highly significant, F(3) = 78.804, p < .0001.

Another observed effect from the participant’s
first language is orthographic in nature, and can be
attributed to the fact that participants used Dutch
orthographic representations to label the vowels,
but employed grapheme-phoneme correspondences
from their native language.

2.1 Vowels

The data uses a total of 26 vowel labels for 14 differ-
ent vowels. In what follows, the vowels will be re-
ferred to with labels that are not necessarily identi-
cal to the orthographic representation or their IPA
symbols.

In the experiment, there were 12 Dutch, 7 Por-
tuguese and 5 Spanish vowels which, together with
their corresponding TPA symbols, are displayed in
table 1. Additionally, in the bilingual data from the
experiment where participants could chose between
vowels from their native language and Dutch, the
Spanish and Portuguese vowels were prefixed with
“S” and “P” respectively in order to represent the
participant’s choice of language. The 26 vowel la-
bels used thus are: “A”, “a”, “E”, “e”, “I”, “”,
“Q7, “o”, “u”, “Y”, “y”, “27, “Sa”, “Se”, “Si”,
“So”, “Su”, “Pa”, “Pct”, “Pe”, “Pef”, “Pi”, “Po”,
“Pu”, “ct”, “ef”.

The prefixing of vowels to indicate the language
the participant associated with the stimuli opens
an important question in modeling the results that
will be discussed in section 5.2.1.



3.2 Bordered Plot

Language | Vowels

13 b2 [Apb] 143 k2 (A9}
Dutch A a E

[¢)

a

o
P
—

L(I”

W
1

LLO?? LAY?? (L2”
i 2 o: u Y y @

[{PN2) [{S}) [
(o} u y

a
WL ” « o «
(§

Spanish

Q o
~a<)

“

@D | =

” “Ct

al

a
Portuguese a
a

o
$
o
e

[APN}) 13 ) (1332
el

[Pl [13)}

o
=

Table 1: Vowel representations used for the different languages.

3 Visualizations

In order to increase visual clarity for the L2A data,
both empirical and simulated, several visualization
techniques were implemented and tested using the
python PyX plotting package?. We will discuss the
workings and advantages of each of the styles be-
low.

One of the challenges of creating the visual-
izations is that we are faced with multiple vowel
guesses per point in the vowel space (one guess for
each participant). Furthermore, we may wish to
overlay the 3 different durations in one 2D plot,
or plot a simulation together with a corresponding
empirical experiment for ease of comparison. The
techniques presented here are specifically targeted
to visualizing this multiplicity of data.

3.1 Symbolic Plot

The first technique used was to plot each of the
symbols found at a particular point in the vowel
space. Since we use a discretized vowel space for
plotting, and since we have multiple vowel guesses
per point, we give each symbol a small random off-
set in the horizontal and vertical planes, to ensure
that they do not overlap. The size of each symbol
is controlled by its frequency in the data. Cate-
gories with a very small relative frequency (10% in
the experiments below) are regarded as noise, and
are not drawn.

To make the different regions occupied by dis-
tinct vowels more easily distinguishable, the vowels
are each supplied with their own color. Alterna-
tively, we can choose to output the guesses in a
different color for each language, which is useful
in visualizations for bilingual experiments, where a

2http://pyx.sourceforge.net/

Figure 1: Human detail symbolic text plot for
Brazilian subjects categorizing stimuli with Dutch
vowels, colored by vowel. Symbol sizes represent
frequency (All vowels shown, for Duration = 1).

subject can provide guesses with both Dutch vow-
els, or those of her native language. Examples of
these types of plots are shown in figures 1 and 2.
The first uses the vowel labels found in the data,
whereas the second plots the data in abstract sym-
bols, which show fewer overlap (but lack the infor-
mational content of having the corresponding vowel
label present).

3.2 Bordered Plot

Because the vowel boundaries are important for the
purpose of this experiment, we may wish to indi-
cate them explicitly. To this purpose, we check for
each vowel, for each point in the step-wise vowel
space, whether that point contains points with sim-
ilar vowel categorizations directly to its left, right,
top and bottom. If no similar vowel is found, a bor-



® @ o © o
8 o) 0988
©) (0) . ° o e o O ©
o o ° o © o O o o
o) o o ° ° © o O OO0
o ©] (@) o 9 © o © 0 o
NY0) (@) o) ° fe] o @ 0 0
(@] () ] o o O 0 0O
0] o o] o © O 0 o0
(o) ) o o © o
(o} O ] O o o
o ° O 0 0 o
© o o QOOo
‘‘‘‘‘ © oo O 0O

Figure 2: Human detail symbolic circle plot for
Brazilian subjects categorizing stimuli with Por-
tuguese vowels, colored by vowel. Circle sizes rep-
resent frequency (All vowels shown, for Duration =

1).

der is drawn between them®. Regions that occupy
less than two blocks are ignored in order to avoid
a cluttered image.

In addition to the borders, the area inside each
block can be filled and colored with respect to their
assigned vowel categorizations. By defining the
transparency for the coloring of a block as 1.0 (max-
imum transparency), minus the square of its rela-
tive frequency, each vowel in a block contributes to
its region’s color with a proportionality relative to
its frequency at that block’s midpoint. Thus, the
more intense a color is, the less variance there is
among subjects in assigning its category.

Finally, we can overlay the symbol plots on top of
the border plots, to provide additional information.
A typical example of the combination of filled re-
gion plots with symbols overlayed is shown in figure
3.

3.3 Ellipsis Plot

A technique commonly used for plotting vowel
space regions, is to calculate the average and stan-
dard deviation for the F1 and F2 values separately
for each vowel, and then plotting an ellipsis with
the average as its centroid, and the standard de-

3The blocks are defined by the midpoints between F1 and
F2 steps. Since borders may sometimes overlap, they receive
a tiny random offset in either plane.

Figure 3: Human detail plot for Brazilian subjects
categorizing stimuli with Portuguese vowels (All
vowels shown, for Duration = 1).

viation in either direction as its radii*. A typical
example of an ellipsis plot is figure 4.

A huge advantage of the ellipsis plots is the clar-
ity of such a plot; it is much easier to inspect than
either of the former techniques, and one can plot
much more data without losing the most important
visual cues in cluttered plots. However, by plotting
only centroids and standard deviations, we lose a
great deal of information. Therefore, as we will see
below, it is useful to make visual comparisons on
both the ellipsis and region + symbol plots.

4 Simulations

This next section will concentrate on simulating
vowel regions within the vowel space and their dy-
namics during second language acquisition. For
those who have little experience with the various
algorithms used, we will give a brief description be-
low.

4.1 Classifiers

Very broadly speaking, in the artificial intelligence
field of machine learning, an (admittedly rough) di-
vision can be made between supervised and unsu-
pervised learning algorithms. In supervised learn-

40ften, the deviations are calculated on the principal
components of the F1, F2 space, resulting in an ellipsis which
is tilted in the direction of maximum covariance.



4.1 Classifiers

Figure 4: Human ellipsis plot for vowel classifi-
cation regions for Brazilian subjects categorizing
stimuli with Portuguese vowels (All vowels shown,
for Duration = 2). Midpoint indicates average F1
and F2 values, size in F1 and F2 directions indi-
cates standard deviation.

ing®, the class labels (i.e., the vowel category for a
stimulus) are provided together with the data (i.e.,
the F1, F2 and duration values) during training.
The algorithm then makes a generalization about
how the data and classes interact with one another
— that is, how to select the best class label for a new
instance that we wish to classify, given the available
information. Since the class labels are available
during training, the learning procedure is generally
easier, and the outcome of the algorithms is rela-
tively easy to evaluate. We know what the ideal
classification would be, and are able to test that
against the observed classifier output. An unfortu-
nate consequence is that, in general, a supervised
classification algorithm can only output the classes
which it has observed. This is relevant for this ex-
periment. If we train on Spanish data, containing
five vowels, and then test it on Dutch data (which
contains the exact same F1, F2 and duration val-
ues, but a different set of vowels), the output can
only consist of Spanish vowel classifications, and so
there will be no correct classifications whatsoever
on any of the instances labeled with Dutch ortho-
graphic labels that are not in the set of Spanish
labels.

In contrast, unsupervised learning algorithms

5When referring to supervised learning in this paper, we
will be refering to classification, rather than regression and
value prediction tasks.

usually make use of some form of clustering. They
find groups within the available data by determin-
ing some measure of similarity between them, on
the basis of their attribute values. In this case, we
have no predetermined class labels, and thus such
a method is quite hard to evaluate.

Finally, there are several algorithms which com-
bine these two approaches in a semi-supervised set-
ting. Usually, they start with a small set of labeled
instances, as in the supervised setting, and then
bootstrap on these instances to identify clusters.

We concentrate here on three instances of the su-
pervised case®, for two reasons. First, as mentioned
earlier, the output is easier to evaluate. Second, in
general, classification is an easier task than clus-
tering, and so we can generally expect the classifi-
cation results to be superior to those that we find
in an unsupervised setting, so that this may give a
better indication of the viability of using further Al
techniques to model L2 acquisition. Finally, L2A is
usually seen as a supervized learning task in which
the learner obtains feedback from his environment
and adjusts his actions accordingly.

First, we will discuss an instance of a memory-
based learning algorithm, called the Nearest Neigh-
bor (NN) classifier, which memorizes all of its train-
ing data and then classifies new instances according
to that memory. We will then proceed by describ-
ing the Naive Bayes (NB) classifier, a probabilistic
algorithm that stores only the frequency distribu-
tions of attributes over classes. A good introduc-
tion to both algorithms is given in [8]. We will
close with the Gradual Learning Algorithm (GLA)
used in Stochastic Optimality Theory (OT), which
makes almost no use of memory, but simply stores
the relative importance of a set of constraints. Note
that there is a trend here from making full use of
memory without any form of abstraction, to storing
only very abstract representations.

4.1.1 Nearest Neighbor

One standing theory on language learning is the
Memory Based Learning (MBL) paradigm. Basi-

60ptimality Theory is a special case described here, and
falls outside the usual range of machine learning techniques,
as it is very specifically designed and optimized for language
learning. Although Stochastic OT is not necessarily fully
supervised, we concentrate here on the supervised part of
the algorithm.



4.1 Classifiers

cally, this theory views learning as being instance-
based. That is, rather than creating abstract cate-
gories based on examples, we store these examples
explicitly, and compare them to any new instances
that are to be categorized.

There is a particular range of machine learning
algorithm which is analogous to this idea, referred
to as instance-based (or case-based) learning meth-
ods. The standard example of such an algorithm,
which corresponds directly to (and is based on)
MBL theory, is the Nearest Neighbor classification
algorithm. This is a so-called lazy learner, meaning
that it does not require complicated learning pro-
cedures, but rather performs the necessary calcu-
lations at time of classification of new instances’.
The basic idea underlying this algorithm is very
simple.

First, in order to make use of such methods, we
should be able to express the difference between two
instances in terms of a numeric value. This means
that each instance must be expressible as occupy-
ing a location in a highly dimensional Euclidean
space. The intuition is that two instances which are
very far apart in this space will be highly dissim-
ilar, while more similar instances will be grouped
closer together.

To learn, one simply stores each the examples
observed by the learner with the corresponding la-
bel. This then gives us an instance space populated
by the observations that the learner has stored up
until the current point. To classify a new instance,
one calculates the Euclidean distance to each exam-
ple in the instance space, and looks at the closest
neighboring point. The label of this point is then
assigned to the new instance.

To illustrate, let us suppose that we have the
three instances in table 2. If we are faced with a
new instance, with values 300, 1600 and 1 for F1,
F2 and duration respectively, and we want to as-
sign the most likely label to this instance, we would
proceed in the following manner.

First, we may normalize the coordinates for the
examples on each axis, by:

7Several optimizations can be made however, in which
decision rules or classification regions can be found based on
the memory space of the lazy learner. A thorough analysis
of such memory efficient MBL techniques is given in [7]. As
most of these techniques should have minimal impact on
classification performance, we will not discuss them further.

’ Vowel \ F1 \ F2 \ Duration ‘

E 200 | 2200 1
O 450 | 800 2
A 900 | 1000 2

Table 2: A vowel classification toy problem.

[ Vowel | F1 | F2 [ Duration |
E 0.0 1.0 0.0
O 103571 00 1.0
A 1.0 [0.1429 1.0

[ 7 J01428]05714] 0.0

Table 3: Vowel classification normalized distances.

0i(25) = ToagCo (o)

This gives us the normalized instance space
in table 3 (with the new instance indicated by
a “?”). If we do not normalize in this way, the
dimension along which the instances are spread
within the largest range would implicitly be given
an larger weight.

We then proceed by calculating the distance to
each of the neighboring points, by:

d(?,x5) = />0y (ar(zy) — ar(z;))?

which gives us table 4. Since the point with
label E is the closest neighbor, we assign the label
E to the new instance.

Note that the NN algorithm performs a form
of “learning by smoothing”, in which it produces
piecewise linear decision boundaries. The space
between each of the instances is automatically
smoothed over to accommodate for unseen in-
stances. This is a significant problem for an algo-
rithm like the Naive Bayes classifier, which needs
to make assumptions on the prior distribution un-
derlying the data before it can classify on the basis

’ Vowel \ Distance

E 0.4518
O 1.4586
A 1.6537

Table 4: Vowel classification toy problem distances.



4.1 Classifiers

of unseen values for continuous attributes.

There are many variations on this basic idea. A
first addition is to include the votes of multiple
neighbors. The label with the highest number of
votes is then assigned to the instance at hand. This
variant is often called k-Nearest Neighbors, where
k stands for the number of points to be considered
in the voting. A natural extension of this approach
is to include all points in the training set. In this
case, note that the vote that each point casts for a
certain vowel must be weighted by some measure
based on its distance to the new instance, other-
wise the label with the most points in the training
set always wins, regardless of the distance of the
new instance to the center of gravity of the region
that this vowel occupies. Usually, this weighting
measure is taken to be the square of the distance.

Nearest Neighbor methods have several proper-
ties which may be relevant to the task at hand.
First of all, the NN algorithm in its simplest form
is very sensitive to noise and outliers in the train-
ing data. The vowel space categorization produced
by human beings typically contains a lot of noise,
which is why we used a weighted-k-neighbors NN
scheme, which is more robust to such noise.

Second, the algorithm in itself cannot output cat-
egorizations in a probabilistic fashion, and so the
same label will be assigned to the same points every
time. This is a severe shortcoming, since one of the
traits that we have to account for in modeling hu-
man performance is the abundance of overlapping
vowel regions. To accommodate for this, we also
performed an experiment where we used the rela-
tive number of votes (weighted by their normalized
squared distance to the new instance) as a prob-
ability distribution over possible vowel labels, and
chose a label according to this distribution. Note
that we can do this, since these weighted frequen-
cies sum to 1.0, but that it is a very rough measure.

4.1.2 Naive Bayes

Another widely used learning algorithm, which is
based on the Bayesian approach in probability the-
ory, is the Naive Bayes classifier. This method has
been very successfully used in a wide range of clas-
sification problems, and has been the topic of much
research.

The Classifier attempts to maximize the likeli-
hood of the (training) data, given the model, such

that, given attribute values (ai,as,...,a,), the
class ¢y p assigned by the NB classifier is

enp = argmaze;ecP(cy) [1; Plaslcy)

with P(c;) the a priori probability that the
instance belongs to class ¢; and P(ailc;) the
conditional probability of observing attribute value
a; in an instance of class c;.

Basically, Naive Bayes classifiers do relative fre-
quency estimation under an assumption of inde-
pendence between variables. The independence as-
sumption, although not always justified, makes the
computation feasible and fast. In our case, we will
assume that F1, F2 and duration values are inde-
pendent (even though they may be correlated).

During training, the classifier is again presented
with labeled training instances. The actual learn-
ing consists of estimating the parameters P(c;) and
P(ai |Cj).

One shortcoming of NB classifiers is that they are
not primarily aimed at dealing with non-discrete
attributes. Possible solutions include (but are not
limited to) either discretizing the training and test
data (if the range of possible values is limited,
and known in advance), or estimating the mean
and variance parameters of an attribute given each
class, and using these as parameters in a Gaussian
distribution. Note that in the latter case, the algo-
rithm must make an assumption about the distrib-
ution that generated the data. Neither solution is
really satisfying, but since the training data was al-
ready discretized in the form of step wise duration,
F1 and F2 values, we simply used these values.

Obviously, a statistical method like this one lends
itself quite naturally to produce probabilistic out-
put. We therefore based our classification of new
instances not just on the most likely class label, but
on the probability distribution over all vowels.

4.1.3 Stochastic OT and GLA

The Gradual Learning Algorithm (GLA) [1] is an
error-driven learning algorithm used with Stochas-
tic Optimality Theory grammars that has success-
fully been used in a number of comparable experi-
ments [6][5][2].

Stochastic OT is an extension to Optimality The-
ory [9], a linguistic model originally applied to
phonology but also used in many other areas of lin-



4.1 Classifiers

guistics. The main idea of OT is that the optimal
candidate is selected from a set of generated can-
didates by means of a hierarchy of soft constraints.
The optimal candidate is the one that incurs the
least serious violations of the constraints. Since the
constraints are ranked, “least serious” means that
the optimal candidate is the one that has the least
violations for the highest ranked constraint where
the candidates differ in their number of violations.
The ranking is absolute, so a candidate with a vio-
lation of a higher ranked constraint will always be
discarded in favor of any other candidate that does
not violate that constraint. A supervised learning
of the best possible constraint ranking can then be
implemented as an adaptation of the order of the
constraints according to the known yields, that is,
the output in the training data, of an input.

As an illustration, consider the example in figure
5. The top left cell specifies the input®, that is, the
stimulus, a vowel with an F1 step value of 1, an F2
value of 1 and a duration of 1.

The other cells in the first row list the —negatively
worded [2]- constraints: The highest-ranked con-
straint says that an input with an F1 value of 1
should not be classified as an /i/, the second one
says that if the F2 value is 1, the stimulus should
not be classified as a /u/ and so on.

The candidates, /i/ and /u/, are represented in
the second and third row of the first column.
The remaining cells in these rows specify viola-
tions (marked with a “*”) or non-violations for
the corresponding constraints: /i/ violates the first
constraint which says that the given input values
should not yield /i/ as an output. Since /u/ does
not violate this constraint, the violation is critical
in determining the optimal candidate and is addi-
tionally marked with a “”. The remaining con-
straints and violations thus play no role in find-
ing the optimal candidate and the cells are greyed
and the optimal candidate, /u/, is indicated with
a symbol (O).

Stochastic OT differs from classical OT in that
constraint rankings are not discrete and ordinal but
rather arranged on a continuous scale, which means
that the distance between constraints is not fixed,
and can thus be learned from training data. Sto-
chastic OT was chosen here, as it is not only based

8The values are given as steps here and not in Hertz or
seconds, due to space constraints.

on OT which was conceived as a linguistic model,
but also has been previously successfully used in
similar experiments.

In addition to shifting as a result of training, the

ranking value varies due to a noise component that
is added during evaluation and that makes the se-
lection of the optimal candidate non-deterministic.
This is because the order of rankings relatively
close (depending on the amount of noise) in rank-
ing value can temporarily switch ranking orders as
the result of the added jitter, yielding a different
total ranking used for the computation of the opti-
mal candidate. In the example above, /u/ always
wins because the evaluation is the same every time:
/i/ violates the highest-ranked constraint and /u/
does not, thus /u/ is the optimal candidate.
In Stochastic OT, the evaluation and the selection
works as in classical OT in principle. However, the
fact that there is a value specifying the distance be-
tween the constraints and that the noise provides a
probabilistic component means that, depending on
how close the ranking values of the first two con-
straints are and how high the noise value is, the
two constraints can switch their order during eval-
uation, meaning that some of the time /i/ will be
the winning candidate.

The gradual learning algorithm (GLA) takes
a set of constraints and input-output pairs aug-
mented with frequency information and conse-
quently adjusts the ranking values of the con-
straints in such a way that the number of errors
(i.e. cases where the generated optimal candidate
for an input does not match the output) is mini-
mized.

The amount by which a constraint’s ranking
value is adjusted is called plasticity. While a large
plasticity value (i.e. the constraints are moved in
big steps) makes for faster learning, the steps made
may be too big, preventing convergence.

Boersma and Hayes [3] propose starting with a
higher plasticity, which is then decreased during
consequent learning, thus combining the advan-
tages of high and low plasticity values, while at the
same time being cognitively plausible with regard
to findings on the speed of language acquisition in
humans®. We adopted this strategy for our simu-

9Neither of the algorithms as outlined above is capable
of explicitly decreasing their rate of learning. Instead, the
learning rate changes implicitly as a result of the data al-
ready learned. To see how this works, imagine feeding the



[F1=240Hz], | [F1=240H7] | [F2=5801z] | [F2=580Mz] | [F1=240H7] | [Dur=0.15] | [Dur=0.13|
[F2= 580Hz], | is not /i/ is not /u/ is not /i/ is not /u/ | isnot /u/ | isnot /i/
[Dur=0.1s]
0 /u/ * ¥ *
7i] ] *

Figure 5: An example OT tableau.

lations.

The constraints we used were created according

to the scheme of negatively worded constraints pro-
posed by Escudero and Boersma [5] as used in the
example above. That is, for each of the values of
our three features, F1, F2 and length and each of
the vowel labels, a constraint of the form “value is
not vowel” was created, yielding a total of 702 con-
straints!®.
Each input pair then was a triple of an F1, F2 and
length value, and the candidates were vowel labels.
The input-output pairs and their frequencies were
retrieved from the empirical data. For each possi-
ble input, all vowels used in the experiment formed
the candidate set.

5 Experiments

Of the algorithms that were used for the simu-
lations below, we implemented the Naive Bayes
and Nearest Neighbor algorithms!? in python from
scratch, and used the Praat program'? [4] for the
OT-GLA simulations. The grammar and con-
straint sets for the OT simulations were self-created
specifically for this experiment.

NN algorithm a single example. It will now classify every
instance as belonging to the same class as the single training
instance. When we add a second example with a different
class label, the instance space will be altered radically. Af-
ter adding a large number of examples, however, each new
training instance will have only a minor impact on the mem-
ory space, and so the rate of learning will be low. A similar
effect occurs for the NB classifier.

1014 x 26 4+ 10 x 26 + 3 x 26, 26 being the number of all
vowel labels.

1A good experimental environment for the Naive
Bayesian and Nearest Neighbor algorithms, as well as
a phlethora of other machine learning techniques can
be found in the WEKA machine learning package
(http://www.weka.org). However, this package did not pro-
vide some of the output features that we required, and so
we decided to re-implement the algorithms ourselves.

2http://www.praat.org/

In all of the experiments below, we only used
emperical data from subjects performing in their
native language (i.e.: Spanish subjects categoriz-
ing stimuli according to Spanish labels) as training
and test data for the learning algorithms. By train-
ing the algorithm on Spanish data and testing it
on the empirical native Dutch monolingual dataset,
we can test the performance of a simulated Span-
ish speaker on a Dutch vowel categorization task.
The reason for the use of purely monolingual data
is twofold. First, this data is relatively clear-cut
(as obviously all subjects have a high command of
their native language and tend to agree more in
their judgments) and is considered to constitute a
measure of “correctness”. Second, if we were to
simply train a model on a dataset containing clas-
sifications of speakers with increasing levels of pro-
ficiency classifying stimuli with vowel labels in a
foreign language (which is already the data that
we want to model), the model itself provides little
or no explanation as to how the vowel space for
these non-native speakers came to look the way it
does.

Each of the stimuli in the test set is presented a
number of times, and the classifier output is com-
pared to the label in the test data each time. In
the case of having non-deterministic output, this
results in a distribution of vowel categorizations for
each stimulus.

Since the regions for different vowels have soft
borders, where multiple categorizations appear to
be possible even for native speakers, the data it-
self is quite noisy. This is even more obvious for
non-native speakers, who express more uncertainty
in their categorizations, and whose data therefore
display even softer region borders. Consequently,
we do not expect (or aim for) the best performance
in terms of the percentage of correct guesses, but
rather concentrate on a more abstract comparison
based on spread and point of gravity of the different
vowel regions. The percentage correct gives only a



5.2 L2 acquisition modeling experiments

small indication of this.

5.1 Monolingual experiments

The native speaker simulations (e.g.: A simulated
Spanish speaker categorizing stimuli as Spanish
vowels) were performed to find a reference level for
the performance of a beginning or naive learner of
Dutch. The native language performance is much
more noise-free, and so we will expect the learners
to do quite well on this data. In contrast, the L2
experiments will be much harder to mimic. This ex-
periment also provides a testing ground for finding
appropriate settings for each algorithm’s parame-
ters (such as the most appropriate k in k-NN).

5.2 L2 acquisition modeling experi-
ments

A first experiment that is of interest is to see how
simulated speakers of one language perform when
classifying stimuli according to vowel categories of
a language they have no experience with. In the
experiments below, the foreign language is always
Dutch, and the native language will be either Span-
ish or Portuguese.

During the experiments performed on human
subjects, the participants were told which vowels
were available for use in categorization, but our
virtual learner does not have this information. If
a classifier has never seen any instance of a cer-
tain vowel, it will assign no probability mass of the
classification to the class denoted by that vowel.
Since this means that the classifiers will be unable
to generalize to vowels that were not observed in
their training set, a way must be provided to do so.
If we assume that a learner has no significant expe-
rience with Dutch whatsoever, we can not just feed
Dutch examples as part of the training set. Fur-
thermore, smoothing by distributing a small part
of the probability mass equally over the unobserved
classes will result in completely random guesses,
which is not realistic in the sense that non-Dutch
speakers will have some intuition about what a cer-
tain Dutch vowel will sound like, perhaps based on
orthographic cues or generalization from their own
native language. Thus, we assume a mapping of
the participant’s native vowel space onto the Dutch
one, which will be pseudo-random (up to a certain

degree), depending on similarities between the two
languages.

Since the learning algorithm has no knowledge
about orthography and language similarity, we cre-
ated such a mapping by hand, based on observa-
tions made on how human participants performed
on the same task. Each mapping consisted of a list
of possible Dutch vowel guesses with a certain fre-
quency for each native vowel separately. The map-
ping was then applied to the output of the classi-
fier, where a random element of the list of possible
mappings was chosen.

5.2.1 Increasing proficiency levels

To simulate an increasing exposure to Dutch lan-
guage as the L2 acquisition process progresses, we
added increasing samples of Dutch training data
to the existing native data. This means that the
learner can find either a known Dutch vowel as its
chosen category, or a known native vowel. If a na-
tive vowel is chosen, it is mapped onto a Dutch one
using the mappings described above. This way, the
learner continues his mapping even at higher pro-
ficiency levels, but the number of guesses (map-
pings) that need to be made decreases as the num-
ber of categorizations based on Dutch experience
increases. We expect the learner’s vowel space con-
figuration to show increasing similarity to the na-
tive Dutch vowel space as the size of the Dutch sam-
ple increases. Another approach to modeling L2 ac-
quisition with increasing proficiency when starting
from a Spanish (or Portuguese) vowel space distri-
bution, is to have the output vowels in the training
data not prefixed with “S” (or “P”), i.e. not to
code specifically for the language.

The learner then already has representations of five
of the vowels of Dutch and, instead of learning a
completely different set of vowels, only has to ad-
just the perceptive field for the vowels that occur
in both his native language and Dutch.

The difference between the two approaches —
introducing vowels with language-specific prefixes
and without — translated to human processing
would be that in one case initially the learner im-
plicitly or explicitly assumes that the vowels that
occur in both languages have the same properties
with regards to their location and distribution in
the vowel space. In the other case, vowels in the
new language are generally assumed to be distinct

10



6.1 Monolingual Experiments

’ Classifier \ Dutch \ Spanish \ Portuguese ‘

3-NN 49.9% | 74.4% 60.5%
NB 61.8% | 82.3% 70.1%
oT 55.4% | 78.2% 69.7%

Table 5: Monolingual classification performance for
each language per classifier.

from the vowels in the native language, although
the mapping function between the native language
and Dutch might mean that both approaches yield
similar results and be functionally equivalent..

We plan to investigate this difference in future
experiments, especially in connection with testing
performance in the native language after the learner
has acquired Dutch, which we assume to require
several vowelspaces to be held by the learners.

6 Results

In this section, we will discuss the results of the
experiments as described above. First, a baseline
performance test on monolingual data (that is, sim-
ulated participants categorizing in their “native”
language), will be briefly discussed, after which the
performance of each classifier is investigated indi-
vidually.

6.1 Monolingual Experiments

For the evaluation of results of the simulations we
will concentrate on the corner vowels /i/, /u/ and
/a/ (for duration of step size 1 (0.1s)), with notes
on other vowel regions where it is deemed appro-
priate.

The results for the monolingual data (in percent-
age of categorized vowels with a matching test set
label) are shown in table 5. These results are for a
simulation of a native Spanish person categorizing
stimuli with Spanish vowels. Since the result is
supposed to be noisy, there will be a large number
of false negatives, and so these results should
only be taken as a lower bound, and an indicative
measure of whether the classifiers are able to learn
anything at all. As is seen from the table, the
Naive Bayes classifier scores highest on all three
monolingual language experiments. However,
since we train and test on the same data for this

11

experiment, it may simply have overfitted the
data'3. What is more important is that the results
suggest that the data contain certain learnable
patterns. It is also important to note that the
accuracy of each of the classifiers decreases as more
classes (more vowels) are available for a language.
Spanish, containing only 5 vowels, is easiest to
learn. Portuguese, with 7 vowels, is a bit harder,
while Dutch, containing a grand total of 12 vowels
is very hard to learn.

An ANOVA run on the three types of simulations
(k-NN, NB and OT, with empirical data as refer-
ence value) reveals no significant difference between
the empirical data and any of the simulations, p =
724, p = .781 and p = .978 for k-NN, NB and OT
respectively (note that the difference for OT is the
least significant by far).

In the following paragraphs we will describe the
results of an initial cross-language experiment, in
which we test using the mapping from Spanish to
Dutch data as a viable way to recreate the human
subject data for inexperienced Spanish learners of
Dutch, with respect to each of the classifiers.

To see how this approach can be justified, the
border plots below show plots for Spanish (human)
subjects classifying stimuli with Dutch vowels (in
figure 6), and Spanish (human) subjects classify-
ing stimuli with Spanish vowels (in figure 7). The
different colored regions represent classification re-
gions in which a certain vowel was chosen. As is
clear from figure 7, the Spanish vowel space is di-
vided into 5 clear-cut regions, and there is little
variance in the choices made (as is indicated by the
intensity of the colors). Compare the regions in the
plot of figure 6 to those in the plot in figure 7 (with-
out paying attention to the vowel labels). There
appears to be a clear correspondence between the
dominant regions for the distinct vowels in the dif-
ferent vowel spaces. An ANOVA with the experi-
ment type as factor reveals no significant difference
between the empirical data and the simulations, al-
though the significance level is not as low as for the
Spanish monolingual simulations; p > 0.05 for all
simulations.

3 0Overfitting is a known problem for many machine learn-
ing algorithms, where an algorithm has adapted nearly per-
fectly to its training data, but is unable to adequately gen-
eralize beyond this data, resulting in poor classification per-
formance on new and unseen instances.



6.1 Monolingual Experiments

Figure 6: Human detail plot for Spanish subjects
categorizing stimuli with Dutch vowels with low
proficiency (All vowels shown, for Duration = 1).

Figure 7: Human detail plot for Spanish subjects
categorizing stimuli with Spanish vowels (All vow-
els shown, for Duration = 1).

A mapping from one onto the other would ex-
plain why some of the vowel categories in the cross-
language categorization seem to be much more
prominent than others; they correspond to a map-
ping from a consistent category from the subjects’
native language. The simulation shows that such a
mapping is indeed possible.

Note that this simulation, although dealing with
cross-language categorization, really only depends
on the learner’s ability to learn Spanish, and on the
hand tailored mapping.

12

Figure 8: 3-Nearest Neighbor detail plot for a sim-
ulated Spanish subject with low Dutch proficiency
categorizing stimuli with Dutch vowels (All vowels
shown, for Duration = 1).

6.1.1 Vowel Space Mapping

Figure 8 shows a detailed colored region plot of the
3-Nearest Neighbor simulation of a Spanish person
making categorizations based on Dutch vowels
without any experience. Similar plots for the
Naive Bayes classifier and the Optimality Theory
outputs are shown in figures 9 and 10 respectively.
The result was found by mapping the classifier’s
Spanish vowel output onto a Dutch vowel, using
a hand tailored, semi-random mapping. The
mapping was done as given in table 6.

Although each of the plots bears quite a bit of
resemblance to the real data, shown in figure 6,
sceptics will note that the match is not perfect.
The main vowel regions are clearly there in each of
the simulations, but there is more uncertainty in
the mapped simulations, and the guesses are more
erratic, as is seen by the lack of consistent color
gradients in the plot, and the irregularity of the
borders. Where the classifiers often have multiple
smaller regions for a less common vowel, and gaps
in the larger regions, the human subjects appear
to be more consistent, increasing their confidence
on which vowel to choose when categorizing stim-
uli that are closer to the centroid of a region of a
vowel in their native vowel space. It is believed that
we may be better able to simulate this for the NB
classifier if the stimulus values are used as continu-
ous attributes (using a normal distribution), rather



6.2 Cross-language Experiments

| Vow [A(a)|a(a)[E(e)|[efe) [I()][i@i)|O®) [o(x)][2()[u]|Y(K) ]|yl ]
Sa (a) 12 Z = 0 0 0 0 0 0 0 0 0
Se (¢) 0 0 5 2 0 | & 0 0 = 0 0 0
Si (i) 0 0 0 S 133 0 0 0 0 0 5
So (0) 0 0 0 0 0 0 % = 0 i i 0
Su (u) 0 0 0 0 0 0 0 0 i Z 2 2z

Table 6: Distribution used for Spanish to Dutch vowel mappings based on empirical data.

Figure 9: Naive Bayes detail plot for a simulated
Spanish subject with low Dutch proficiency catego-
rizing stimuli with Dutch vowels (All vowels shown,
for Duration = 1).

than discrete steps.

Nevertheless, the plots seem to suggest that it
may well be possible to explain the layout of the
vowel regions by taking a Spanish vowel space, and
projecting Dutch vowels onto it.

To make the differences and similarities more
clear, figure 11 shows an ellipsis plot for the three
corner vowels, /i/, /a/, and /u/ for both the simu-
lations and the empirical data. Recall that the size
of an ellipsis is determined by the variance com-
ponents of the corresponding vowel in the F1 and
F2 directions, with the midpoint determined by the
F1 and F2 averages for that vowel. Comparing the
ellipsis plots, we can see that for all the corner vow-
els, the match to the human data (shown in green)
is quite good. The inconsistency with respect to
the human categorization are in part due to the
perceptual interference caused by the short stimu-
lus duration. Our mappings do not yet provide for

13

e we . we w

Figure 10: Optimality Theory detail plot for a sim-
ulated Spanish subject with low Dutch proficiency
categorizing stimuli with Dutch vowels (All vowels
shown, for Duration = 1).

different behaviors for different durations.

Note that the NN classifier, which had the low-
est matching score in the trial run described earlier,
also shows the most inconsistencies with the human
data. This is to be expected, as the mappings to
Dutch vowels are based on the Spanish categoriza-
tion. The NB performs somewhat better, but still
appears to be a bit noisy. The OT simulation ap-
pears to be the most consistent.

6.2 Cross-language Experiments

Next, it will be interesting to look at the changes
that occur within the simulated vowel space, as we
increase the amount of Dutch ‘experience’ that a
learner has. The corresponding empirical (human)
data, for high proficiency Spanish speakers catego-
rizing stimuli using Dutch vowels, is shown in figure
12. Note that, although we would expect the uncer-



6.3 Discussion

Figure 11: Ellipsis plot for simulated Spanish sub-
jects for all three simulations with low Dutch profi-
ciency categorizing stimuli with Dutch corner vow-
els, with overlaid corresponding human experi-
ment (NN: Orange, NB: Blue, OT: black, Human:
Green, Corner vowels shown, for Duration = 1).

tainty for a proficient learner to be much lower, the
plot seems to suggest otherwise. Some vowels are
very easily identified, as seen by the intensity of the
colors, while other stimulus regions are categorized
with many different vowel labels (as indicated by
an almost white region). The correspondence be-
tween the vowel space configuration of Spanish na-
tives using Dutch vowels, and that of native Dutch
speakers also seems to be quite far apart still.

Upon investigation, the average amount of time
that the Spanish native participants had been
speaking Dutch, measured over all participants for
which this information was available was 11.0% of
their lifetime, while none of the participants had
been speaking Dutch for a fraction of time higher
than 17.9% of their age. Figures 14, 15 and 16 show
simulated vowel spaces for learners (k-NN, NB and
OT respectively) that were trained on 100% of the
Spanish data, combined with 30% Dutch data. As
is seen from the graphs, the correspondence to the
Spanish-to-Dutch mapped space is still relatively
high for the NN and NB learners. The NN again
shows a lot of classification uncertainty. This may
be partially due to the low k values used (3), re-
sulting in very local decision boundaries.

The OT simulation learns fastest, and has

reached a near-Dutch configuration after adding
only 30% Dutch training data. In figure 20, the

Figure 12: Human detail plot for Spanish subjects
categorizing stimuli with Dutch vowels with high
proficiency (All vowels shown, for Duration = 1).

corner vowels for each of the simulations are shown
after 30% Dutch exposure, together with the em-
pirical native Dutch, and empirical high-proficiency
Spanish-Dutch ones. Note that the OT simula-
tion data corresponds almost exactly to the Dutch
data at this point for both the /i/ and /u/ vowels.
The other learners have also distanced themselves
from the Spanish configurations, and appear to fit
the Dutch vowel space configuration more closely
than was the case for the low-proficiency simula-
tion'4, although traces of Spanish influences are
still clearly visible.

In contrast, each of the simulations trained with
100% of the Spanish monolingual data and 60% of
the Dutch data, shown in figures 18, 17 and 19,
shows a much higher correspondence to the Dutch
native perceived vowel space, shown in figure 13.

This can be seen as a unanimous prediction that
speakers with an abundance of Dutch experience
will have a perceived vowel space category configu-
ration much closer to the Dutch one than their less
experienced counterparts.

6.3 Discussion

Although so far the OT simulations seem to do
best, the nature of the mappings used may well
cloud our judgement. At the moment, a mapping

14

14Note that, although the learners seem to have picked
up more Dutch than the human participants, the amount of
Dutch training for the learners is actually more than 10%
higher.



> (1= <] =
K I I

Figure 13: Human detail plot for Dutch subjects
categorizing stimuli with Dutch vowels (All vowels
shown, for Duration = 1).

is chosen after an algorithm has selected a native
vowel. Once the Spanish categorization is chosen,
Spanish to Dutch mappings for other potential can-
didates can no longer compete, and so the borders
between mappings are rather solid. This may also
offer a partial explanation for the lack of central-
ization in the NB and NN simulations. However,
since the OT simulation can provide better results
under the same circumstances, this may be suffi-
cient grounds to rule in favor of this algorithm as
the best candidate algorithm so far.

7 Conclusions

In this paper, we have presented a trinity of both
visualization techniques and algorithms, in order
to carry out a number of initial simulations of the
vowel space during the process of second language
acquisition. In addition, we provided empirical ev-
idence that performance in stimulus categorization
by non-native low proficiency speakers of Dutch can
be achieved by a simple mapping made from their
native vowel space, without further subdivisions or
adjustments of the regions in that space.

Although the verdict is still out on what the best
model will be in the end, the most promising of
the three algorithms is by and large the Optimality
Theoretic simulation using the Gradual Learning
Algorithm.

As it is, we find that all of our models, when
trained on a large portion of Dutch data, shift their

Figure 14: k-NN detail plot for simulated Span-
ish subjects categorizing stimuli with Dutch vow-
els, after 30% exposure to Dutch training data (All
vowels shown, for Duration = 1).

vowel space configuration from a mapped Spanish,
towards a Dutch native space. This can be seen
as a prediction; as a (human) subject is exposed to
increasing quantities of non-native input, the native
vowel space will undergo a transformation in which
the region borders are aligned with the new input.
We have shown that all three learning algorithms
make this prediction, although they differ in their
details.

8 Future Work

First and foremost, it should be noted that none
of the algorithms as presented here are capable of
learning without labeled information'®. It would
be interesting, then, to see if similar achievements
can be made using unsupervised learning methods.

Secondly, in light of the predicted shift in vowel
space configuration, it would also be interesting to
investigate the vowel perception of real Spanish na-
tives that have spent more than half their lives in
the Netherlands, and compare this data to the pre-
dictions made by these models.

Furthermore, the mapping made from Spanish
to Dutch seems to be backed up by the empirical
data presented here. If there is a mapping from
the native language to Dutch, then the reverse may
also be true for long time speakers of Dutch who

15

15The OT simulation is capable of making a separate clus-
tering step, but so far, this has not been explored.



REFERENCES

Figure 15: NB detail plot for simulated Spanish
subjects categorizing stimuli with Dutch vowels, af-
ter 30% exposure to Dutch training data (All vow-
els shown, for Duration = 1).

have Spanish as their primary language. If this is
indeed the case, we may find that, when having
such subjects classifying with Spanish vowels, they
perform a mapping from Dutch to Spanish. The
models above can be used to predict the effects of
such a mapping.

Finally, it may be more prudent to apply the
mappings to the possible classifications before a fi-
nal choice is made, rather than after the classifier
has chosen a Spanish vowel, and make the final
mapping choice based on the resulting distribution.
This will give the mappings more opportunity to
compete, and may result in more realistic distribu-
tions.

References

[1] Paul Boersma. Functional Phonology. Formal-
izing the interactions between articulatory and
perceptual drives. PhD thesis, Universiteit van
Amsterdam, 1998.

[2] Paul Boersma and Paola Escudero. Learning
to perceive a smaller 12 vowel inventory: an
optimality theory account. Rutgers Optimality
Archive, 2004.

[3] Paul Boersma and Bruce Hayes. Empirical tests
of the gradual learning algorithm. Linguistic
Inquiry, 32:45-86, 2001.

16

Figure 16: OT detail plot for simulated Spanish
subjects categorizing stimuli with Dutch vowels, af-
ter 30% exposure to Dutch training data (All vow-
els shown, for Duration = 1).

[4] Paul Boersma and David Weenink. Praat:
doing phonetics by computer (version 4.4.24)
[computer program]|, 2006.

[5] Paola Escudero and Paul Boersma. Mod-
elling the perceptual development of phonolog-
ical contrasts with optimality theory and the
gradual learning algorithm. In Penn Working
Papers in Linguistics 8.1: Proceedings of the
25th Penn Linguistics Colloquium, pages 71-85,
2003.

[6] Paola Escudero and Paul Boersma. Bridging
the gap between 12 speech perception research
and phonological theory. Studies in Second Lan-
guage Acquisition, 26(4):551-585, 2004.

[7] Jhy-Han Lin and Jeffrey Scott Vitter. A theory
for memory-based learning. Technical Report
Technical report DUKE-TR-1993-29, 1993.

[8] Thomas M. Mitchell. Machine Learning. 1997.

[9] Alan Prince and Paul Smolensky. Optimal-
ity theory: Constraint interaction in generative
grammar. Technical report, Rutgers Center for
Cognitive Science, 1993.



REFERENCES

e s

‘‘‘‘‘

Figure 19: OT detail plot for simulated Spanish
Figure 17: k-NN detail plot for simulated Span- subjects categorizing stimuli with Dutch vowels, af-
ish subjects categorizing stimuli with Dutch vow- ter 60% exposure to Dutch training data (All vow-
els, after 60% exposure to Dutch training data (All els shown, for Duration = 1).
vowels shown, for Duration = 1).

00 e w

Figure 20: Ellipsis plot for simulated Spanish sub-

xxxxx jects for all three simulations with high Dutch profi-
ciency, categorizing stimuli with Dutch corner vow-

Figure 18: NB detail plot for simulated Spanish els, with overlaid corresponding human Spanish

subjects categorizing stimuli with Dutch vowels, af- experiment and human native Dutch experiment

ter 60% exposure to Dutch training data (All vow- (NN: Orange, NB: Blue, OT: black, Human native

els shown, for Duration = 1). Spanish: Green, Human native Dutch: Red, Cor-
ner vowels shown, for Duration = 1).

17



A.1 Plotting

A Appendix: Software Docu-
mentation

A.1 Plotting

extraSymbols.py This file defines the drawing
methods for several extra symbols (mostly IPA
symbols) so that they can be used for plotting. This
was done because the number of symbols in PyX is
limited. We recommend using text-based symbols,
however, as they look nicer.

vowels.py This file can output several conver-
sion tables for the vowel data. get_coordinates()
outputs translation tables for F1, F2 and du-
ration steps into their continuous real values.
get_vowels () outputs a dictionary with properties
used to plot the different vowels, such as vowel and
language color, and corresponding plotting sym-
bols.

vdict.py This file contains a dictionary wrapper
class that can be used to assign internal variables
to the dictionary.

plotData.py This script uses the Python graph-
ics package Pyx'6 to produce the visualizations dis-
cussied in section 3. It also makes use of Psyco'”,
a Python module that compiles bits of the Python
code to C++ binary code to speed up the execu-
tion.

The function plotData(filename,
outputpath, lookuptable, fls, f2s,
lengths, symcolors, bounds="grid",
fill regions, cutoff, removenoise,
removelow, per_vowel=False,
include _vowels, include_lengths) is  the
plotting function for the border and symbol plots.
It takes filename as input file, and outputs a PDF
plot to outputpath. It uses lookuptable, fis,
f2s and lengths, output by vowels.py as vowel
property and coordinate translation tables respec-
tively. The three attributes cutoff, removenoise
and removelow represent different noise removal
cutoff values. It is recommended to leave them at
their defaults. The function includes only vowels
and lengths specified in include_vowels and

6http:/ /pyx.sourceforge.net/
Thttp:/ /psyco.sourceforge.net/

18

include_lengths. symcolors specifies the choice
for type of symbol and symbol coloring to use.
The different symbol styles are:

e “text” uses text symbols, colored by language.

e “coloredtext” uses text symbols, colored by

vowel.

“symbols” uses PyX symbols, a different sym-
bol for each vowel (e.g. IPA), colored by lan-
guage.

“coloredsymbols” uses PyX symbols, a differ-
ent symbol for each vowel (e.g. IPA), colored
by vowel.

“coloredsymlanguage” uses PyX symbols, a
different symbol for each language (e.g. cir-
cles, squares), colored by language.

“coloredsymvowel” uses PyX symbols, a dif-
ferent symbol for each language (e.g. circles,
squares), colored by vowel.

The argument bounds="grid" means that the
function will use the function findBoundaries()
to find and draw vowel regions. fill regions
specifies whether or not the regions inside these
boundaries should be filled.

The bash plotting function with which to
plot all boundary or symbolic data in a
directory is plotAllDataInDir(datadirs,
outputpath, symcolors, boundaries="grid",
fill regions, character_cutoff,
removenoise, removelow, per_vowel,
include_vowels, include_lengths). It takes a
list of directories (datadirs) and creates a series
of plots for each data file found in that directory
with the specified features.

The function plotEllipsisForFiles(files,
plotdir, lookuptable, include_vowels,
length) plots ellipsis plots for all files in files
in one plot (output to directory plotdir) accord-
ing to the properties output for the vowels by
vowels.py, in lookuptable. It will output only
the vowels and lengths in the lists include_vowels
and length respectively. It uses the function
computeAverages(data) to compute the nec-
essary statistics (average, variance, covariance,
correlation) for F1, F2 and duration values per
vowel.



A.2 Modeling

all
use

To plot (separate) ellipsis plots for
data files in a list of directories,
plotEllipsisAllDataInDir(datadirs,
plotdir, lookuptable, include_vowels,
include_lengths).

The bash plot function used to plot the data for
the simulations (combined ellipsis and border plots)
is plotAllSimulationsData(simulationsdir,
outputdatapath, outputplotpath, lookup,
symcolors="text", boundaries="grid",
fill regions, character_cutoff,
removenoise, removelow, per_vowel,
include_vowels, include_lengths). It rewrites
the output of the simulations to the format that
is used in the plotfunctions (and outputs the data
to outputdatapath), and plots the data to the
directory outputplotpath. lookup is the vowel
properties table output by vowels.py. symcolors
is the type of (symbolic and/or border) plot used.
boundaries specifies whether or not boundaries
should be drawn. fill regions specifies whether
or not regions should be filled in the border plots.
per_vowel=True outputs a separate plot for each
vowel.  include_vowels and include_lengths
specify which lengths and vowels should be plot-
ted. The function creates all border plots for the
simulations, as well as several combined ellipsis
plots for different models with the same language.

Aside  from  the functions  producing
the plots, the plotData.py file also con-
tains several data reformatting functions.

toComparativeStatisticsFormat( filenames,
experiment_type, outputfilename) rewrites
the data in all of the files in filenames to a
single outputfile, adding a column with the text in
experiment_type (which should be specified for
each file in filenames), so that different experi-
ments can be compared in SPSS. If no experiment
type is specified for a file, the filename is used.

A.2 Modeling

textToARFF.py This file contains methods to
convert the (column-wise) experimental data to
(row-wise) ARFF formatted data, to be used as in-
put to WEKA or the python classifiers described
below. The function allVowelToARFF (path,
arffdatadir) will convert all files in directory
path to ARFF files, and write them to separate
files in directory arffdatadir. The output format

19

contains the following columns.

F1 (NUMERIC)

F2 (NUMERIC)
LENGTH (NUMERIC)
FIN (NOMINAL)

F2N (NOMINAL)
LENGTHN (NOMINAL)
Flst (NOMINAL)

F2st (NOMINAL)
LENGTHst (NOMINAL)
VOWEL (NOMINAL)

and outputs one line for every vowel in the em-
pirical data (so, one line for every vowel times it’s
frequency).

A.2.1 Nearest Neighbour & Naive Bayes

The Naive Bayes and Nearest Neighbor classifiers
were re-implemented from scratch in python. The
software package consists of 6 files. They use ARFF
formatted (row-wise) input.

fileWrappers.py This file contains a number
of I/O methods, the most important of which
is the function loadARFFDataFile(filename),
which reads ARFF formatted data from a file and
outputs a list of lists (one list of elements per line
in the file). IMPORTANT: The training and test-
sets should be reloaded this way before each new
experiment, even if the same sets are used.

NaiveBayesClassifier.py This file contains the
Naive Bayes classifier class, including testing and
training functions.  First, one must create a
new classifier instance, by stating “classifier
= NaiveBayesClassifier()”. The function
runAllVowelSimulations() can then be used to
run a number of simulations automatically.
Alternatively, one can specify a new experiment
by loading a new trainingset by the use of the func-
tion loadARFFDataFile(trainingsetfilename),
which is specified in file fileWrappers.py.
One can wuse n-fold (hold out) cross vali-
dation on this data by using the function
NaiveBayesClassifier.crossValidate(
database, n_fold, class_index, ignore,
continuous_attr, cont_type=’gauss’,
k=3, output_file, probability matching,



A.2 Modeling

vowel _translation) The most important
attributes here are database (the trainingset),
ignore (which specifies which features — i.e.: col-
umn numbers — should NOT be used for training
and testing), probability matching (which is
either True or False) and vowel_translation
(which provides the mapping of native to second
language vowels, e.g.: mapping from Spanish to
Dutch). If the class label is not the last element
of each row, the index must be specified. The
other attributes should not be altered, as they
represent experimental procedures that have not
been thoroughly tested.

Similarly, one can also run the validation on a
separate testset, using NaiveBayesClassifier.
validateOnSeparateTestSet(database,
testset, class_index, ignore,
continuous_attr, cont_type=’gauss’, Kk,
output_to_file, probability matching,
vowel_translation).

kNearestNeighborClassifier.py This file
contains the Nearest Neighbor classifier methods.
One can run the simulations directly by us-
ing the function runAllVowelSimulations().
Additionally, one can run a new simula-
tion by creating a model using “classifier
= kNearestNeighbor(trainingset,
class_label_index, ignore)”.

the  trainingset must be loaded
loadARFFDataFile(trainingsetfilename)
first.

Validation is currently only possible
a separate testset (no explicit method
plemented for  cross-validation  yet), us-
ing the function kNearestNeighbor.test(
testset, class_label_index,
ignore, k, weigh_square_distance,
probability matching, output_file,
vowel _translation). Here, k is the number of
neighbors used (-1 if all), weigh_squared_distance
is a boolean indicating whether or not the neighbor
vote should be weighted by it’s distance to the
point to be classified (always true in the case of
considering all neighbors), and the other settings
are similar to those in the NaiveBayesClassifier
test method. Testing is currently very slow for this
classifier, so be warned.

Again,
using

on
im-

20

translateVowels.py This file contains
the functions for mapping vowels from
one language to the other. The function

translatevowel (from_language, to_language,
vowel) is used to translate a vowel from one lan-
guage (ES, BR or LA at the moment) to another
(only Dutch (D) is implemented). The matching
is done by choosing a random element from a list
of possible translations (separate for each vowel in
the source language). If no match is found, the
vowel is returned without being translated.

trainSet.py This file can generate an artificial
normally distributed data set with one variable for
two classes. Used as a test function for the Naive
Bayes classifier.

priorityQueue.py This file implements a prior-
ity queue interface.

A.2.2 OT

The software used for creating, training and test-
ing the OT learner consists of four different scripts.
GenerateGrammar.py creates a new OT gram-
mar, GenerateData.py converts the human data
into training files and training.praat trains and
tests the grammar. training.praat also calls
makeStatistics.py which converts the testing
data into tables analogous in format to the rep-
resentation used for the human data.

GenerateGrammar.py The Python script does
not take any input and as an output generates an
untrained OT grammar phonGrammar .0TGrammar.
A list of the vowels and stimuli is retrieved from
vowels.py and the file translationtable respec-
tively. The script then generates the constraints,
one for every combination of F1, F2 and duration
value and every vowel. All constraints are initiated
with a value of 100. Then for every stimulus a ta-
ble that indicates which candidate (every vowel is
a possible candidate for every input) violates which
constraints is generated. The resulting grammar is
written to a file and can consequently be opened
with Praat.

GenerateData.py This Python script is called
without arguments and as an output creates train-



A.3 Prognosis

ing files for the OT learner in the folder training. It
loops through the result tables in a directory spec-
ified in the code and converts each into a list of
input-output pairs where the input is the stimulus
and the output is a vowel. Each input-output pair
is augmented with a relative frequency correspond-
ing to the percentage that the output was given as
a response to the input.

Thus, for every input the relative frequency val-
ues of the pairs it appears in add up to 1. The func-
tion readVowelDataFromTabbedFile takes a file-
name and reads it into a variable which is then
returned. MakeDatafile takes a filename and for
each stimulus-vowel pair for which the count is not
zero finds the relative frequency and writes the pair
into the current training file.

training.praat This Praat script takes the name
of a grammar, a training file, the number of chews.
replications and testing samples per location as an
input. Additionally “Translate” can be set to on or
off. “Grammar”: By default, this is set to ”origi-
nal” which means that the untrained grammar gen-
erated by GenerateGrammar.py is used an a initial
grammar. Since all grammars are saved to gram-
mars in the OT folder after training, a pre-trained
grammar that resulted from a previous simulation
can also be chosen. In this case the name of the
grammar in question has to be given without the
“.OTGrammar” extension. “Training”’: Here, the
name of a training file from the training folder can
be entered (again without the file extension, i.e.
“ PairDistribution”). By default the Dutch train-
ing data containing all lengths is used. “Chews”
specifies the number of times each input-output
pair is presented to the grammar. By fefault it is
set to 10. “Replications” gives the number of rep-
etitions per plasticity. The plasticity is decreased
from 1.0 to 0.1 in three steps during training, so
the number of total replications is the number en-
tered here times four. Testing samples per loca-
tions is by default set to 50. The number speci-
fies the number of times that every stimulus is pre-
sented during testing and thus could be seen as be-
ing analogous to the number of participants in the
experiments on humans. Finally, if “Translate” is
checked, this means that the testing data will be
mapped to Dutch using the mappings discussed in
the text. For obvious reasons this should only be

21

checked when the training set is not Dutch. The
script trains a grammar according to the parame-
ters given in the input and then outputs the testing
results into the folder tmp, one file per stimulus. It
then calls the Python script makeStatistics.py.

makeStatistics.py This script takes the number
of a grammar and a training file and a boolean
indicating whether the testing results should be
mapped to Dutch as an input. It reads the test-
ing files in “tmp” and sums the data into a table
identical in format with that of the human data,
that is, the columns represent vowels and the rows
stimuli and the cells give the number of times that
the vowel was given as a response to the stimulus. If
mapping is enabled, the responses are transformed
using translateVowels in the Classifiers package.

A.3 Prognosis

In the near future, we wish to reorganize the pack-
age in a cleaner manner. For instance, at the mo-
ment, some of the scripts (plotData.py in particu-
lar), contain many different functions designed for
a variety of tasks. These functions should be or-
ganized more cleanly if more users wish to make
use of them. We also want to add more and better
comments to the code, and create a better doc-
umentation. Finally, if time permits it, we would
like to create a more user-friendly interface for both
the plotting and simulation software.



	Introduction
	Experiments and previous work
	Vowels

	Visualizations
	Symbolic Plot
	Bordered Plot
	Ellipsis Plot

	Simulations
	Classifiers
	Nearest Neighbor
	Naive Bayes
	Stochastic OT and GLA


	Experiments
	Monolingual experiments
	L2 acquisition modeling experiments
	Increasing proficiency levels


	Results
	Monolingual Experiments
	Vowel Space Mapping

	Cross-language Experiments
	Discussion

	Conclusions
	Future Work
	Appendix: Software Documentation
	Plotting
	Modeling
	Nearest Neighbour & Naive Bayes
	OT

	Prognosis


