
Speech Technology Project 2004
Building an HMM Speech Recogniser for

Dutch

Frans Adriaans Markus Heukelom Marijn Koolen
Tom Lentz Ork de Rooij Daan Vreeswijk

Supervision: Rob van Son

9th July 2004

Contents

1 Introduction 2

2 Group Dynamics and Project Progress 3
2.1 Commitments and Planning 3
2.2 Proceedings of the Project . 3

2.2.1 Unifying data formats 4
2.2.2 Creating data sets . 4
2.2.3 Finishing and testing the generator 4
2.2.4 Monophone list rewriting 4
2.2.5 SP state . 5
2.2.6 Unused dictionary entries 5

3 Theoretical Approach 6
3.1 The Grammar . 6
3.2 A Pronunciation Dictionary Using SAMPA 7

3.2.1 Converting Words into Phonemes 7
3.3 Recording . 8
3.4 Phonetic Transcription . 9

4 Controlling Training and Testing 10
4.1 Training . 10
4.2 Testing . 11

1

5 Results 11

6 Discussion 12
6.1 Performance and stability . 12
6.2 Future extensions . 13

A Recorded Sentences 14

B The scripts 18

1 Introduction

In the Speech Technology Project of 2004, a group of students in the Master’s
fase of Artificial Intelligence were assigned the task of building a speech
recogniser for Dutch using Hidden Markov Models (HMM’s). The goal of
this project was to build a robust phoneme driven recogniser. That means
that it should be able to generalise both from speaker specific properties and
that its training should be more than just instance based learning. In the
HMM paradigm this is supposed to be the case, but we wanted to put this
to practice. Also, the system should serve as a stepping stone for future
projects.

As the time scope was limited (less than a month) and to be able to
focus on more specific issues than Hidden Markov Modelling in general, the
HTK toolkit was used. Secondly, to reduce the difficulties of the task, a very
limited language model was used. Future research can be directed to more
extensive language models.

This report is one of the products of the project. The other products are
a HMM for Dutch spoken language (albeit for a very restricted domain) and
a recipe for building HMM speech recognisers, especially for Dutch and using
HTK.

The report can be read as a whole, but those interested in the theoretical
issues dealt with or in the reusing the “products” can skip § 2. That section
provides an overview of how the project was done in practice (project is
meant as opposed to product, i.e. the system we built).

§ 3 will deal with those issues that are interesting from a theoretical point
of view, for those who want to incorporate or extend the Speech Recogniser
and for subsequent Speech Technology Projects, that will use, test, improve
and/or alter it.

As it is tedious to keep citing the HTK’s documentation, the only refer-
ence to it is here: [Cam02] is the toolkit itself and [You02] is the main source
of documenation, the HTK Book.

2

2 Group Dynamics and Project Progress

2.1 Commitments and Planning

At the 7th of June meeting preference was given to trying to get the HTK
running and read through the manuals. Some people encountered some prob-
lems running HTK, but the fact that binaries were available1 solved that.

At the 14th of June meeting, all participants felt they knew enough about
the HTK in general to get started. Tasks were dispatched; for every task,
one person is responsible, while others might work on it as well. The task
division and ther people assigned to the tasks at that moment are:

Recording the sentences Marijn (responsible), Frans, Ork. Anyone with
spare time will assist as well.

Dictionary (completion) Ork

Documentation Tom (resp.), Daan

Convert Praat labels to phonetic MLF Tom (resp.), Markus

Training HMM’s Markus (resp.), Daan

Installing HTK on linux “OW” machines (renderfarm) Markus (resp.),
Ork, Daan

Coordination Ork

For pragmatic reasons, the project was restricted to the same domain as the
HTK tutorial suggests, namely instructions that a telephone can perform,
like “Dial one two zero five” or “Dial X”, where X is the (full, first or family)
name of one of the team members.

2.2 Proceedings of the Project

The first main issue encountered was collecting data. Data in this project
means spelling–pronunciation-pairings (per word), in HTK terminology and
in the rest of this report named a dictionary.

Rob van Son provided a quite large wordlist (graphemic) and 1000 re-
corded sentences (as WAV-file) with corresponding phonetic transcriptions
(called the IFA2 corpus). He provided a dictionary as well.

1but a bit hidden in the HTK website
2Instituut voor Fonetiek Amsterdam, i.e. Insitute of Phonetic Sciences Amsterdam

3

2.2.1 Unifying data formats in accordance with HTK standards

One of the most important concerns was the data formats. The work in the
first week concentrated on defining usable formats within the limits of HTK
and translating all data into those formats.

These solutions are incorporated in the final shell script, that generates
an HMM speech recogniser from the data. This was mainly done to ensure
that others trying to do similar work can disregard these issues if they wish
to do so3.

2.2.2 Creating data sets

The IFA corpus is not the only data set used. This set was of course domain-
unrelated. Therefore on the 17th of June the creation of a substantive amount
of domain-related data for both training and testing purposes was initiated.
The sentences (as text) were generated using the grammar. There were
150 “sentences” (see appendix A); Frans, Markus, Ork and Tom read out
these sentences in the silent recording studio at the Instituut voor Fonetiek
(Institute of Phonetic Sciences, abbreviated to IFA).

2.2.3 Finishing the HMM generator and testing its performance

The HTK tools create a series of HMM, each one a bit more sophisticated
or trained better on the data. After creating a HMM with triphone states,
the data becomes too sparse (just as indicated in [You02]), so these need to
be clustered according to some shared properties.

To coordinate all the solutions into one system, a compile script was
built that could handle all the steps in the tutorial. The idea of this script
is that it should be possible to run the entire tutorial on any machine with
HTK installed with only a few prewritten scripts and config files. This script
allowed both rapid debugging and easy retracing if a bug was introduced.
This last thing was important, while debugging or extending the system, to
avoid messing up the whole system and not being able to repair the error
anymore. The script called for execution of various other scripts. See the
next section for more details.

2.2.4 Monophone list rewriting

In the days between the 23th and the 30th of June, a very stubborn bug
stopped the HMM generation short. At the point of building triphone mod-

3Of course, those interested in these settings are invited to inspect the script and add
adaptations.

4

els, the HTK did not recognise its own output anymore. The clustering tool
found only two clusters and gave a lot of warnings, and the tools that were
to be used with the clusters had fatal errors. This resulted from the fact
that the file monohpones all, generated from all the dictionaries, contained
some entries that were not phonemes in the SAMPA alphabet. This prob-
lem probably originates from typing errors in one of the dictionaries. These
entries (: * newline) were removed manually before re-running from step
4.

2.2.5 SP state

The sp state4 caused some confusion, especially with the usage of monophones0
and monophones1 and in knowing where to have the sp state, and where not.
This caused problems during the testing; the current compile script correctly
adds the sp state where needed.

2.2.6 Unused dictionary entries

Entries in the dictionary (the small one generated from the toy grammar)
which were not pronounced caused crashes in the testing stage. For example,
we had the name Tom transcribed as t o m and
t O m. The HVite pass at step 8 descided that only the second version (t
O m) was pronounced, so the first version was never placed in the triphone
mlf files. During the testing stage HVite tries to find an entry in the HMM
for that pronounciation, which is not there. See the following command line
session:

-> HVite -S test.scp -H hmm15/macros -H hmm15/hmmdefs -l ’*’ \

-i recout.mlf -w wdnet -p 0.0 -s 5.0 -T 7 dict tiedlist -C \

in/config.hconfv

Read 2821 physical / 6702 logical HMMs

Read lattice with 605 nodes / 1106 arcs

ERROR [+8231] GetHCIModel: Cannot find hmm [o-]m[+???]

FATAL ERROR - Terminating program HVite

Removing the TOM t o m sp entry from the dictionary solved this prob-
lem. This had to be done for the words Tom, Markus, Heukelom and num-
mer. Markus Heukelom had to be removed entirely because his name was
accidentally omitted from the testprompts file. As a result of this his name

4short pause

5

never got recorded, and it contained a few unique triphones which resulted
in HVite not being able to reconstruct his name from other data.

Meanwhile, a language model was prepared. Language modelling was the
last stage in the project due to time constraints. The most frequent words in
the speech fragments of the IFA corpus were extracted and a bigram model
was made for these words. The words were ranked according to frequency
and then this list was pruned after the words that account for a certain
percentage of the corpus. This percentage is a parameter; if it is set to 80%,
for instance, then the corpus would decrease in size by 80% if all these words
were deleted from it.

The other 20% of the corpus would then consist of words outside the
language model.

3 Theoretical Approach

3.1 The Grammar

For the limited scope of this project, only a few words and a toy grammar
were defined. The words were digits, the names of the project members
and the two imperatives “draai” (dial) and “bel” (call). The grammar was
defined in BN-form, as follows:

Format 3.1 $variable defines a phrase as anything between the subsequent
= sign and the semicolon, where | stands for a logical or, i.e. ∨. Brackets
have the usual grouping function and square brackets denote optionality.

The used toy grammar was:

$digit = EEN | TWEE | DRIE | VIER | VIJF |

ZES | ZEVEN | ACHT | NEGEN | NUL;

$name = [ROB] (VAN SON) |

[FRANS] ADRIAANS |

[TOM] LENTZ |

[MARIJN | MARINUS] KOOLEN |

[ORK] (DE ROOIJ) |

[MARKUS] HEUKELOM |

[DAAN] VREESWIJK;

(SENT-START (DRAAI <$digit> | BEL $name) SENT-END)

With the HTK tool HParse a lattice file was built, which is a network
containing words and transitions according to the grammar. The HSGen

6

tool can use this lattice file to generate random sentences. See § 4.1 on page
10 for the use of these sentences.

3.2 A Pronunciation Dictionary Using SAMPA

In order to train the HMM network, a large pronunciation dictionary is
needed. The format of this dictionary is dictated by HTK as follows:

Format 3.2 word [output]* pronprob* phonemes
in which the * means that the entry is optional; the optional arguments were
always included to avoid misrecognition of phonemes starting with a digit.

SAMPA [Cha95] was used as phonetic alphabet.

This pronunciation dictionary was then used to find the phonetic tran-
scriptions of the words in our domain.

3.2.1 Converting Words into Phonemes

NeXTeNS was used to automatically generate a pronunciation dictionary, i.e.
the phonemes for approximately 1.5 milion words from a list based on Dutch
newspapers5. This was done in multiple steps:

• The words in an already given but smaller pronunciation dictionary
were deleted from the word list, so that words for which pronunciations
were already available were not analyzed again. This was done for two
reasons:

1. The other dictionaries are hand corrected, and this is not. So it
is better to have phonemes from those dictionaries than from this
‘fallback’ dictionary.

2. The process is slow; as little words as possible should be passed
through it.

• The resulting word list with about 1.3 milion words left is then inserted
into NeXTeNS phoneme generation script.

The phoneme extraction process does have a few bugs: for the first few
minutes, it processes words at a speed of 14.000 words per minute, and
after about 150.000 words it slows down to zero. This could indicate some
sort of memory leak. Increasing the heap size (with the --heap parameter)

5provided by Rob van Son

7

increased the maximum number of processable words to arround 230.000,
but the slowdown still occured.

This was solved by restarting after every 100.000 words. The speed was
reasonable after this adjustment.

3.3 Recording

In order to train and test the recognizer on the domain and on the voices
of the team members, 150 sentences were automatically generated from the
grammar with HTK’s HSGen. The sentences were recorded by four different
speakers (Tom, Markus, Ork and Frans), resulting in a set of almost 600
sentences (some sentences were deleted in the segmentation process, because
a word was skipped by the speaker).

Initially the speakers were to imitate the pronunciation of the NeXTeNS
speech synthesizer for Dutch6. Speakers tend to change their pronunciation
when they have to enumerate a large amount of similar sentences. This
problem could have been avoided by letting the speakers repeat the speech
synthesizer for each sentence. Also, by using Nextens’s automatically gen-
erated phonetic transcription, the same phonetic transcription would have
been available for every speakers’ sentences. It would have ensured consis-
tent realizations among speakers.

However, the automatically generated phonetic transcriptions are not en-
tirely based on Nextens, since name transcriptions were constructed manu-
ally. Secondly, NeXTeNS is not installed on the computer in the recording
studio at the Institute of Phonetic Sciences. Because of these two problems,
NeXTeNS was not used for the recording session. This results in a more
noisy training and test set, since the phonetic transcriptions do not exactly
match the actual speech waveform. On the other hand, the recorded speech
is more natural.

As the toolkit does not require phoneme duration information for the
training sentences, the (differences in) timing in the pronunciation of the
training sentences is not important. The toolkit learns to recognise the
phonemes through fitting the phonetic transcriptions on the training set.
Therefore, the phoneme duration information that is generated by Nextens
for each utterance was not needed anyway, just the phonetic transcriptions.
These transcriptions are used for all realisations of the same sentence, even
though there might be variation between speakers relative to the transcrip-
tion, for instance dropping or inserting phonemes. In order to avoid that,
the phonetic transcription should have been done manually, but this would

6for more information, see the reference [Mar]

8

take to much time for this project.
As mentioned before, the sentences were recorded at the recording studio

of the Institute of Phonetic Sciences. This gave the opportunity to use a
high-quality microphone in a silent environment. The speakers were given
a list with sentences which they had to read aloud. After about every 50
sentences they took a short break, and drank a glass of water.

The differences in pronunciation between speakers (and their consequences)
can be categorised in two categories:

Phonetic change E.g., ‘n’-deletion: some speakers said /~z e v @ /, oth-
ers / z e v @ n /,

Articulation variation E.g., some speakers had a rolling ‘r’, others not in,
for example, ‘Ork’

Phonetic change degrades the quality of the training set, since the same
phonetic transcription was used for all speakers. The main problem caused
by phonetic change is that the model cannot properly train on phonemes
because the example set for a particular phoneme is flawed. It might even
cause overtraining, when the model considers for instance the pronunciation
of / @ sil / as one of the allophones of / @ / followed by / n /. For
our limited domain this need not make the results worse, because the word
/ z e v @ / is then recognised as / z e v @ n /, i.e. the word “zeven”,

instead of being recognised as “zeve”, which is not a word and thus leads
to failure of meaning extraction. Methodologically speaken this is clearly
erroneous, though.

Articulation variation on the other hand is of course a problem for recog-
nition but if there were no articulation variation the task of recognising would
become an instance based learning problem (much more easier than it in fact
is). So this is not a flaw of the data but an inherent aspect of the complexity
of the field of speech recognition.

The recordings were segmented into 590 different wav-files by hand, using
“Praat” [Boe04]. Therefore the data can be assumed not to contain any extra
noise caused by variation in silence length etc.

3.4 Phonetic Transcription

HTK uses so-called Master Label Files to store information associated to
speech. Which makes things a bit confusing is the fact that there are two
things an MLF can contain: words and phonemes. In the tutorial the usages
of various HTK tools are shown that can convert lists of sentences into lists

9

of words and then lists of phonemes, the last two in an MLF. The phonetic
MLF is made using the dictionary.

For the IFA corpus, annotation was already provided, so these were con-
verted into a phonetic MLF straight away with a tool that Rob van Son
provided and was adapted to the special syntax of HTK MLFs.

The generated test sentences were indeed turned into MLF’s as described
in the HTK Book. It turned out that the phonetic representations used were
not completely the same. This had to be solved twice.

1. Because some of the transcriptions of the IFA corpus contained phonemes
that were not in the dictionary, a discrepancy arose that caused prob-
lems in the subsequent steps. As HTK builds a phoneme list using the
dictionary, it ran into errors assuming that the symbols in the tran-
scriptions could not be phonemes. To solve this ad hoc, the missing
phonemes 2, o+, X, Y and F were added to the phoneme list gener-
ated by HTK.

2. The phonemes containing digits and/or a + sign could not be parsed
directly from an MLF file. This is because the HTK toolset sees it as
a number. This was fixed by replacing them.

4 Controlling Training and Testing

The speech recogniser we built was suspected to have flaws. We have there-
fore built in various levels of restriction in the training and testing sets.
Evaluation was done on certain combinations.

4.1 Training

In principle, the HMM should be tested on a large corpus containing a wide
range of phoneme pronunciations. For this, we used a 1000 sentences from
the IPA corpus. These were annotated already. The speakers of this set were
spread over gender and age, so the corpus can be seen as quite representative
for all speakers.

A second training set was more domain-specific and also speaker-specific.
The team members, except for Marijn and Daan, recorded 150 sentences
from the grammar. As all team members are students that started in 1999,
male and living in or near Amsterdam, this would give the HMM more infor-
mation on that particular kind of speaker. This made it possible to take the
interspeaker variation into account when testing, by testing on one speaker
(that then has to be left out of the training set).

10

4.2 Testing

To test the HMM’s, we made a few different pairs, were the first element is
the way the HMM was trained and the second how it was tested. Note that
it was not possible to train on just IFA or Domain and test on the other, as
the phoneme sets were disjunct.

TRAINED ON TESTED ON
IFA & Domain Domain, training speakers
IFA & Domain Domain, ‘unknown’ speaker
IFA & Domain New sentences, training speakers
IFA & Domain New sentences, new speaker

Table 1: The different training and testing methods

5 Results

As noted above, there were several seperations of training- and testset. In
this section we will discuss the results of these different divisions.

The simplest test is leaving out a percentage of the recorded sentences
while training. The recognition rates for different sizes of the test set are as
follows:

WORD SENTENCE
PERCENTAGE RECOGNITION (%) RECOGNITION (%)

10 99.71 91.38
20 99.46 92.31
50 99.67 89.93
80 99.66 89.18

Table 2: Testing on random sentences

Another test was to train the model leaving all sentences of a particular
speaker out completely. The test was then run on that speaker’s sentences.
This test gives an indication of how robust the system has generalised from
speaker-specific phoneme pronunciations.

In the third performed test, some sentences were left out of the training
set entirely. Thus, the test set consisted of sentences that were never seen
before.

Also, a small test was performed in which all sentences of a particular
speaker were removed from the training set, as well as a certain number

11

LEFT OUT WORD SENTENCE
SPEAKER RECOGNITION (%) RECOGNITION (%)
Tom 99.57 85.71
Markus 99.78 72.60
Ork 99.43 89.13
Frans 99.78 81.63

Table 3: Testing on a new speaker

WORD SENTENCE
PERCENTAGE RECOGNITION (%) RECOGNITION (%)

12 99.41 92.86
25 99.80 90.57
50 99.84 89.35

Table 4: Testing on new sentences

of sentences for all speakers (i.e. a combination of the previous two tests).
Because there was not much variation between speakers, this was done only
for one speaker (Tom). This produced the following result(s):

WORD RECOGNITION (%) SENTENCE RECOGNITION (%)
99.57 84.35

Table 5: Testing on a new speaker, with new sentences

6 Discussion

6.1 Performance and stability

(. . .) [T]o build robust acoustic models, it is necessary to train
them on a large set of sentences containing many words and
preferably phonetically balanced. For these reasons, the trai-
ning data will consist of English [in this case, Dutch] sentences
unrelated to the phone recognition task. [You02]

The results suggest that the corpus is not only necessary, but also suf-
ficient. Training the system almost exclusively on the IFA corpus does not
affect the recognition rate. As a result of this, it did not matter much how
the recorded data was divided over training and testing set.

12

Note that the language model enhanced performance as well, because of
the very strong restrictions it imposed upon the language. Nevertheless, it
does not give any indication what telephone number was to follow. Every
new digit was a surprise to the system; this did not matter that much for
performance. The performance on digits was facilitated by the fact there are
only ten digits.

As shown, the system can handle speakers that it did not train on, but of
course, all speakers were male students aged around 23, as mentioned before.
The same holds for sentences7 it did not train on.

6.2 Future extensions

Unfortunately, the scope of the project did not allow for testing with the
language model disabled. This would have isolated the phoneme recogniser
as such, and would probably also have meant for the training data on the
domain to become more valuable for the system. This would be an interesting
test to run.

Secondly, a less restrictive language model should be implemented. It can
illustrate the interaction between HMM phoneme recognition and language
model matching better; the present system depends heavily on the language
model.

7In this case, ‘a sentence’ is: all realisations of one text.

13

A Recorded Sentences

These sentences were recorded by Tom, Frans, Ork and Markus at the In-
stitute of Phonetic Sciences (University of Amsterdam) on the 18th of June
2004.

Due to a small bug in the grammar, a couple of sentences are in fact
meaningless, but that should not bother the speech recogniser.

1. DRAAI DRIE ZEVEN NEGEN VIER ZES ACHT TWEE VIJF VIJF NEGEN

2. BEL EEN VIJF ZEVEN NEGEN

3. BEL VIER NUL NEGEN DRIE VIER

4. DRAAI ZEVEN VIER VIJF DRIE ZEVEN TWEE ACHT ACHT VIJF

5. DRAAI ZES NUL DRIE DRIE VIJF ACHT

6. BEL ORK DE ROOIJ

7. BEL TOMAS LENTZ

8. BEL FRANS ADRIAANS

9. BEL ROB VAN SON

10. DRAAI DRIE VIER VIJF EEN ZES VIER NEGEN VIER VIER

11. BEL DE ROOIJ

12. BEL DE ROOIJ

13. DRAAI ACHT VIER EEN DRIE NUL NUL NUL NUL

14. DRAAI VIER DRIE TWEE NUL ACHT NEGEN

15. BEL TOMAS LENTZ

16. BEL ZEVEN ZEVEN NEGEN NEGEN NEGEN ZES VIER ZEVEN

17. BEL VAN SON

18. BEL NUL TWEE NUL VIJF ZEVEN EEN VIER NEGEN VIJF NEGEN

19. BEL ORK DE ROOIJ

20. BEL DRIE VIER TWEE TWEE DRIE NUL ZES

21. DRAAI NUL ZES NEGEN ZES NUL NUL TWEE EEN ZES VIER

22. DRAAI TWEE VIER DRIE NEGEN

23. BEL NEGEN EEN VIJF ACHT DRIE ZES VIJF DRIE ACHT

24. BEL TWEE EEN VIJF NEGEN ZES DRIE ZES ZES

25. BEL FRANS ADRIAANS MARIJN KOOLEN

26. BEL VAN SON

27. DRAAI TWEE ZEVEN ZEVEN VIJF VIJF TWEE DRIE TWEE ACHT

28. BEL EEN NUL ZES TWEE NEGEN EEN DRIE TWEE VIJF ZEVEN

29. BEL DRIE TWEE VIJF NEGEN VIER VIJF NEGEN

30. BEL ZES NEGEN ACHT VIJF

31. BEL ORK DE ROOIJ

32. BEL FRANS KOOLEN

33. BEL TOMAS LENTZ

14

34. BEL EEN NUL EEN

35. BEL LENTZ

36. DRAAI ZEVEN ACHT ZES NEGEN EEN

37. BEL DAAN VREESWIJK

38. DRAAI VIJF EEN NUL DRIE ZES NUL NEGEN NEGEN ACHT

39. BEL DAAN

40. DRAAI DRIE NUL ZES EEN NEGEN DRIE VIJF ZES

41. DRAAI NUL EEN EEN EEN VIJF EEN VIJF EEN

42. DRAAI ZES ACHT NUL NEGEN VIER VIJF

43. BEL TWEE TWEE ACHT EEN

44. BEL LENTZ

45. BEL ZEVEN VIJF DRIE ACHT VIJF

46. DRAAI DRIE VIJF VIER ZEVEN ZES ZES EEN

47. BEL NEGEN TWEE ZEVEN NUL EEN EEN ACHT EEN TWEE ZEVEN

48. BEL TWEE ZES NUL

49. DRAAI DRIE NUL EEN VIER NUL

50. BEL VIER ACHT ZEVEN NUL ZEVEN DRIE VIJF

51. BEL VIJF ZES ZES DRIE

52. BEL NUL VIER DRIE ZES EEN ACHT EEN NEGEN ZES

53. BEL VIJF ZEVEN NEGEN NEGEN ZEVEN VIJF VIER VIER ACHT

54. BEL VIJF VIER VIER DRIE ZEVEN TWEE

55. BEL DRIE NUL ACHT ACHT NEGEN VIJF

56. DRAAI VIJF ZES NUL

57. BEL LENTZ

58. DRAAI ZEVEN TWEE ACHT NUL ZEVEN ZEVEN ZEVEN TWEE

59. DRAAI ZEVEN TWEE EEN NEGEN

60. BEL VIJF NEGEN NEGEN ACHT

61. DRAAI TWEE NUL TWEE VIJF ZEVEN TWEE

62. BEL NUL NUL NEGEN

63. BEL TWEE NUL ACHT NEGEN

64. BEL VIER NEGEN NUL TWEE DRIE EEN TWEE

65. BEL TWEE NEGEN EEN NEGEN VIJF VIJF VIJF NUL

66. BEL DAAN VREESWIJK

67. DRAAI ACHT ZEVEN NUL

68. DRAAI ZEVEN VIJF NEGEN TWEE ACHT ZEVEN NEGEN ZEVEN DRIE ZES

69. BEL DAAN VREESWIJK

70. BEL ZEVEN VIJF ZES ACHT VIJF EEN NUL

71. DRAAI NEGEN EEN VIJF EEN ACHT VIER

72. BEL VIJF ZEVEN TWEE VIJF EEN VIJF NUL ZEVEN

73. BEL VAN SON

74. DRAAI VIER TWEE VIJF ACHT

15

75. BEL VIER ACHT VIJF DRIE VIER VIER ZES ZES

76. BEL TOM LENTZ

77. DRAAI VIER VIER VIJF VIER VIJF ZEVEN DRIE

78. BEL NEGEN DRIE VIJF VIER

79. BEL NEGEN ZES DRIE NUL ZES DRIE NEGEN ZES DRIE VIJF

80. DRAAI EEN NUL TWEE

81. BEL DAAN VREESWIJK

82. DRAAI ZEVEN DRIE NEGEN ZEVEN NEGEN ZEVEN VIER VIER VIJF

83. BEL ZEVEN VIJF ACHT VIJF EEN TWEE

84. BEL ZES VIJF NEGEN ACHT TWEE TWEE TWEE ACHT VIJF TWEE

85. DRAAI ZEVEN VIJF VIER

86. BEL MARIJN

87. BEL ACHT VIJF NUL

88. BEL TOM

89. BEL ACHT ZES NEGEN EEN TWEE NEGEN VIJF TWEE NUL

90. BEL LENTZ

91. DRAAI VIER DRIE ACHT EEN ZEVEN EEN ACHT ZEVEN NUL VIER

92. BEL ROB

93. BEL ZES NUL NEGEN VIJF ZES EEN TWEE ZEVEN EEN ZEVEN

94. BEL EEN VIJF ACHT NUL VIER VIJF DRIE NEGEN ACHT TWEE

95. BEL ZES TWEE TWEE EEN TWEE DRIE VIJF VIJF

96. BEL NUL TWEE EEN VIER ZEVEN NEGEN

97. DRAAI ZEVEN EEN ZES DRIE EEN NEGEN

98. BEL ZEVEN VIER ZES NUL ZEVEN

99. BEL LENTZ

100. DRAAI VIJF NUL ACHT

101. DRAAI VIJF NEGEN DRIE NEGEN

102. DRAAI ZEVEN VIJF NEGEN EEN ZES TWEE TWEE NUL

103. BEL EEN VIER VIER VIJF VIER EEN TWEE

104. BEL TOMAS LENTZ

105. DRAAI ACHT DRIE ACHT VIER EEN NUL NEGEN

106. BEL ROB VAN SON

107. BEL FRANS ADRIAANS

108. DRAAI NEGEN ACHT DRIE ZEVEN

109. BEL ZEVEN EEN ZEVEN ZEVEN ACHT EEN NUL ZES ACHT VIER

110. DRAAI EEN TWEE NEGEN ZES ACHT VIJF

111. BEL ROB VAN SON

112. BEL VAN SON

113. BEL DE ROOIJ

114. BEL DRIE NUL NUL ZEVEN NUL NEGEN ACHT

115. DRAAI NEGEN NUL ZES ZEVEN DRIE DRIE TWEE VIER ZEVEN ZEVEN

16

116. DRAAI NEGEN VIER VIJF ACHT VIER ACHT ZEVEN

117. BEL LENTZ

118. DRAAI EEN NEGEN VIJF EEN DRIE ZEVEN ACHT VIER

119. BEL ZES ZEVEN TWEE NEGEN EEN VIER EEN

120. DRAAI TWEE NEGEN ACHT DRIE

121. DRAAI NEGEN ZES NEGEN DRIE

122. DRAAI ACHT DRIE ZES

123. BEL ORK DE ROOIJ

124. DRAAI VIER VIER VIER

125. DRAAI NEGEN ZES DRIE NEGEN EEN TWEE ZES DRIE DRIE

126. DRAAI VIJF NUL ZEVEN EEN NUL NUL DRIE ACHT

127. BEL ACHT ZES VIJF ACHT

128. DRAAI TWEE EEN ZES TWEE EEN ZEVEN DRIE

129. DRAAI ZES EEN DRIE NEGEN NEGEN ZEVEN ZEVEN

130. BEL ZES NUL ZEVEN VIER NEGEN

131. DRAAI ZEVEN DRIE TWEE VIJF

132. BEL TOMAS LENTZ

133. BEL ACHT EEN TWEE DRIE ACHT ZEVEN ZES TWEE NEGEN

134. BEL VIJF TWEE NUL VIER NEGEN VIJF

135. BEL DRIE NEGEN NUL ZEVEN NEGEN VIER

136. DRAAI VIER ZES DRIE

137. DRAAI EEN ZEVEN NEGEN DRIE NEGEN VIER VIER VIER NEGEN

138. BEL VIER TWEE ZES ACHT

139. DRAAI VIER EEN TWEE ACHT EEN VIJF VIJF ZEVEN DRIE VIER

140. BEL EEN EEN ZES DRIE ACHT NEGEN VIER NEGEN

141. BEL ACHT VIER ACHT ZEVEN

142. BEL FRANS ADRIAANS KOOLEN

143. DRAAI DRIE ZES VIJF NEGEN VIER EEN ACHT EEN ZES EEN

144. DRAAI NUL NUL DRIE

145. DRAAI DRIE ZES NEGEN TWEE NEGEN TWEE VIER NUL

146. DRAAI VIER TWEE ZES ACHT DRIE ZEVEN

147. BEL NUL EEN DRIE

148. DRAAI VIJF NUL VIJF VIJF NUL ACHT

149. DRAAI VIJF ACHT ZEVEN

150. BEL VREESWIJK

17

B The scripts

Below is a list of all the scripts created for this project, with a short descrip-
tion. The code of the scripts should be informative enough to understand
how they perform there task (for anyone who is interested).

compare.py Comparing test output with original sentences. It parses the
recout.mlf file and a file with the original sentences, and outputs for
every sentence whether it was recognised correctly or what went wrong.

dividetesttrain.py Dividing filelist into train- and testset. Either a per-
centage or the name of a speaker can be given as a command line
argument to this file, creating a test set from a certain size or a certain
speaker. The other command line arguments are the file of origin, the
file for the train set and the file for the testset.

ExtractPhonemesTomAndOrk.pl Creating MLF’s from IFA corpus. The
transcription for the IFA corpus is turned into a Master Label File
with phonemes. Uses SentenceLabel.pl.

fixFonOrk.py Rewriting phonemes. This scripts detects and rewrites ille-
gal phonemes into legal ones. It can be run on dictionaries, phoneme
lists and master label files.

generateTestMLF.py Adapting an MLF file for multiple speakers. This
scripts reads the MLF file generated from the testprompts in step 4
and duplicates each label for each speaker that has recorded this label.
The scripts outputs a new MLF containing the duplicated result.

hmm4gen.py Creation of the silst silence state for step 7

hmmdefsgen.py Conversion from proto into an hmmdefs (see [?] for more
details on the formats). The scripts automatically copies the proto-
type model in hmm0 for every monophone and creates a hmmdefs file.
Strangely enough, there was no such script in the HTK toolset.

init stp Sets the HTK environment variables. Please check the variables
in this script, and change them for your HTK installation.

maketrihed Creating mktri.hed. Used to create a .hed file for step 9.2.

quotePhone.py This script quotes triphones, i.e. puts quotes around them.
It is useful to quote out triphones which contain illegal characters (HTK
does not understand numbers and cannot handle the +-sign very well).

18

Nevertheless, this script seems insufficient to solve all HTK format
problems. In the current implementation; it is no longer used because
all the illegal phonemes are rewritten to legal ones before starting with
fixFon.py.

SentenceLabel.pl Needed for ExtractPhonemesTomAndOrk.pl.

transdict.py Dictionary translation script, that translates dictionaries from
other formats (IPA, Nextens) into the HTK format. It sorts all the en-
tries and converts words to upper case, which seems to be preferred by
HTK. N.B.: this script can also be used to substract two dictionaries
from each other.

19

References

[Boe04] Boersma, P., D. Weenink. Praat. Internet: http://www.praat.org,
2004.

[Cam02] Cambridge University Engineering Department, Microsoft
Corporation. Hidden Markov Model Toolkit. Internet:
http://htk.eng.cam.ac.uk, december 2002.

[Cha95] Chan, D., A. Fourcin, D. Gibbon, B. Granstrom, M. Huckvale,
G. Kokkinakis, K. Kvale, L. Lamel, B. Lindberg, A. Moreno, J.
Mouropoulos, F. Senia, I. Trancoso, C. Veld, J. Zeiliger. “EU-
ROM - A Spoken Language Resource for the EU”. In Eurospeech
’95, volume 1, pages 867–870. 4th European Conference on Speech
Communication and Speech Technology, September 1995.

[Mar] Marsi, E., A. van den Bosch, J. Kerkhoff, T. Rietveld, A. Russel,
E. Klabbers. NeXTeNS: Open Source Text-to-Speech for Dutch.
Internet: http://nextens.uvt.nl.

[You02] Young, S., G. Evermann, T. Hain, D. Kershaw, G. Moore, J. Odell,
D. Ollason, D. Povey, V. Valtchev, P. Woodland. The HTK Book.
Internet: http://htk.eng.cam.ac.uk, december 2002.

20

